
Review Article

Journal of Advanced Research in Embedded System (ISSN: 2395-3802)
Copyright (c) 2024: Author(s). Published by Advanced Research Publications

Journal of Advanced Research in Embedded System
Volume 11, Issue 1 - 2024, Pg. No. 1-5

Peer Reviewed Journal

I N F O A B S T R A C T

Embedded systems are ubiquitous in modern technology, driving
innovations across industries. Embedded hardware design and
architectures form the backbone of these systems, enabling efficient,
specialized computing for diverse applications. In this comprehensive
review, we explore the fundamental principles of embedded hardware
design and delve into various architectures commonly employed in
embedded systems, including ARM, x86, RISC-V, and FPGA. We discuss
emerging trends such as heterogeneous computing, AI acceleration,
security features, and energy efficiency techniques. Despite the progress,
challenges like design complexity, real-time constraints, and security
vulnerabilities persist. Looking ahead, collaborative efforts between
hardware and software engineers, coupled with interdisciplinary
research, will shape the future of embedded systems. This review
provides insights into the evolving landscape of embedded hardware,
essential for understanding the technological advancements driving
the next generation of embedded systems.

Keywords: Embedded Systems, Hardware Design, Architectures,
Real-Time Systems, Heterogeneous Computing

E-mail Id:
siddhant.pandey22@gmail.com
Orcid Id:
http://orcid.org/0000-0005-2387-0427
How to cite this article:
Pandey S. A Comprehensive Review of Embedded
Hardware Design and Architectures. J Adv Res
Embed Sys 2024; 11(1): 1-5.

Date of Submission: 2024-05-04
Date of Acceptance: 2024-06-05

A Comprehensive Review of Embedded Hardware
Design and Architectures
Siddhant Pandey
Student, Civil Engineering Department, Barkatullah University, MP, India.

Introduction
Embedded systems, the silent engines powering modern
technology, have become integral parts of our daily lives,
from smart home devices and wearable gadgets to critical
industrial machinery and automotive systems. At the core
of these embedded systems lies a sophisticated interplay
of hardware and software, with hardware design and
architectures serving as the foundation upon which these
systems are built.

Embedded hardware design involves creating specialized
computing systems optimized for specific tasks, often
with stringent constraints on power consumption, size,
and real-time performance. These systems are tailored
to operate seamlessly within larger devices or systems,
providing functionalities ranging from simple control tasks
to complex data processing and communication.

In this review, we embark on a journey through the intricate
world of embedded hardware design and architectures. We
explore the fundamental concepts underpinning embedded
hardware design and investigate the diverse architectures
commonly employed in embedded systems. From the
ubiquitous ARM and x86 architectures to the open-source
RISC-V and reconfigurable FPGA-based designs, each
architecture offers unique advantages suited to different
application domains.

Moreover, we delve into the latest trends and innovations
shaping the landscape of embedded hardware. From the
integration of AI and machine learning acceleration to the
growing emphasis on security features and energy-efficient
design techniques, the field of embedded hardware is in
a state of constant evolution.

Despite the progress, challenges persist, including managing

http://orcid.org/0000-0005-2387-0427

2
Pandey S
J. Adv. Res. Embed. Sys. 2024; 11(1)

ISSN: 2395-3802

design complexity, meeting real-time constraints, and
ensuring robust security measures. Addressing these
challenges requires interdisciplinary collaboration and
innovative solutions spanning hardware and software
domains.1-4

Embedded Hardware Design: Fundamentals
Embedded hardware design forms the cornerstone of
embedded systems, encompassing the intricate process
of creating specialized computing platforms tailored to
specific tasks and constraints. In this section, we delve
into the fundamental aspects of embedded hardware
design, covering key components, design considerations,
and optimization techniques.

Key Components:
1.	 Microcontrollers (MCUs) and Microprocessors

(MPUs): Microcontrollers integrate a CPU core,
memory, and peripherals onto a single chip, making
them ideal for low-power, cost-sensitive applications.
Microprocessors, on the other hand, offer higher
processing power and are suitable for more complex
tasks. Selection between MCU and MPU depends on
factors such as performance requirements, power
consumption, and cost constraints.

2.	 Memory Systems: Embedded systems require various
types of memory for program storage, data storage, and
temporary storage (RAM). Flash memory is commonly
used for program storage due to its non-volatile nature,
while SRAM or DRAM serves as working memory for
data storage and processing.

3.	 Peripheral Interfaces: Embedded systems interface
with the external world through peripherals such
as GPIO (General Purpose Input/Output), UART
(Universal Asynchronous Receiver/Transmitter), SPI
(Serial Peripheral Interface), I2C (Inter-Integrated
Circuit), USB (Universal Serial Bus), Ethernet, and more.
These interfaces enable communication with sensors,
actuators, displays, and other devices.5,6

Design Considerations
1.	 Power Efficiency: Power consumption is a critical

consideration in embedded systems, especially in
battery-operated devices or applications with strict
power constraints. Design techniques such as clock
gating, power gating, and low-power modes help
optimize energy usage.

2.	 Real-Time Performance: Many embedded systems
require deterministic responses within specific time
constraints. Designing for real-time performance
involves minimizing interrupt latencies, ensuring timely
task execution, and meeting deadlines.

3.	 Size Constraints: Embedded systems are often

deployed in space-constrained environments such as
wearables, IoT devices, and automotive electronics.
Miniaturization techniques, system-on-chip (SoC)
integration, and multi-layer PCB design help address
size constraints.

4.	 Cost Optimization: Cost-effective design is crucial,
especially in high-volume consumer electronics
and industrial applications. Selecting components,
optimizing PCB layouts, and minimizing unnecessary
features help reduce manufacturing costs.7,8

Optimization Techniques
1.	 Hardware/Software Partitioning: Determining which

tasks are best implemented in hardware and which are
better suited for software execution helps optimize
performance and resource utilization.

2.	 Parallelism and Pipelining: Leveraging parallel
processing and pipelining techniques improves
performance by executing multiple tasks simultaneously
or overlapping processing stages.

3.	 Memory Optimization: Techniques such as code and
data compression, memory banking, and caching
enhance memory utilization and reduce memory
access times.

4.	 Clock and Power Management: Dynamic Voltage and
Frequency Scaling (DVFS), clock gating, and power
gating techniques adjust clock frequencies and power
supply voltages dynamically to match processing
demands, thereby conserving energy.9,10

Architectures in Embedded Systems
Embedded systems employ a variety of architectures, each
offering distinct advantages suited to different application
requirements, performance levels, and power constraints. In
this section, we explore some of the common architectures
used in embedded systems and their key characteristics.

ARM Architecture

•	 Overview: ARM (Advanced RISC Machine) architecture
is ubiquitous in embedded systems, ranging from
microcontrollers to high-performance computing
platforms.

•	 Characteristics: ARM processors are known for their
energy efficiency, scalability, and versatility. They offer
a range of cores catering to different performance
levels and power requirements.

•	 Applications: Widely used in smartphones, tablets,
IoT devices, automotive systems, and industrial
automation.

•	 Examples: ARM Cortex-M series for microcontroller
applications, Cortex-A series for high-performance
computing, and Cortex-R series for real-time
applications.

3
Pandey S

J. Adv. Res. Embed. Sys. 2024; 11(1)

ISSN: 2395-3802

x86 Architecture

•	 Overview: Historically associated with personal
computers, x86 architecture is increasingly making
its way into embedded systems.

•	 Characteristics: x86 processors offer high computational
power and compatibility with a wide range of software
applications.

•	 Applications: Found in industrial automation, medical
devices, digital signage, and networking equipment
requiring high processing capabilities.

•	 Examples: Intel Atom, AMD Ryzen Embedded, and Intel
Core processors adapted for embedded applications.

RISC-V Architecture

•	 Overview: RISC-V is an open-source instruction set
architecture (ISA) gaining popularity in embedded
systems due to its flexibility, scalability, and open
nature.

•	 Characteristics: RISC-V provides a modular and
extensible architecture, making it suitable for
customizations and optimizations for specific
applications.

•	 Applications: Found in IoT devices, edge computing
platforms, academic research, and aerospace
applications.

•	 Examples: SiFive Freedom platforms, HiFive
development boards, and various custom
implementations tailored for specific use cases.

FPGA (Field-Programmable Gate Array)

•	 Overview: FPGA-based designs offer reconfigurable
hardware, allowing for flexibility and parallel processing
capabilities.

•	 Characteristics: FPGAs are highly customizable and
suitable for applications requiring low latency, high
throughput, and real-time processing.

•	 Applications: Used in signal processing, aerospace
and defense, automotive, industrial control, and
prototyping.

•	 Examples: Xilinx Zynq UltraScale+, Intel (formerly
Altera) Cyclone and Stratix series FPGAs.

MIPS Architecture

•	 Overview: MIPS (Microprocessor without Interlocked
Pipeline Stages) architecture is known for its simplicity
and efficiency, particularly in embedded and real-time
systems.

•	 Characteristics: MIPS processors offer a reduced
instruction set architecture (RISC), optimized for low-
power and high-performance applications.

•	 Applications: Embedded systems, network routers,
digital cameras, and automotive infotainment systems.

•	 Examples: Microchip PIC32 series, MIPS-based SoCs
from MediaTek, and legacy MIPS processors.11,12

Power Architecture

•	 Overview: Power Architecture, originally developed by
IBM, is known for its performance-per-watt efficiency,
making it suitable for embedded and low-power
applications.

•	 Characteristics: Power Architecture processors
offer a balance between performance and power
consumption, ideal for applications with strict power
constraints.

•	 Applications: Embedded computing, automotive
electronics, networking equipment, and industrial
control systems.

•	 Examples: NXP QorIQ processors, Freescale (now NXP)
MPC5xxx series, and legacy PowerPC processors.

Trends and Innovations in Embedded Hardware
Design
Embedded hardware design is continuously evolving to
meet the increasing demands of diverse applications, from
IoT devices to edge computing platforms. Several trends
and innovations are shaping the landscape of embedded
systems, pushing boundaries in performance, connectivity,
security, and energy efficiency. Here are some of the
notable trends:

Heterogeneous Computing

•	 Overview: Heterogeneous computing architectures
combine different types of processing units like CPUs,
GPUs, DSPs, and FPGAs in a single system-on-chip (SoC).

•	 Significance: Allows for optimized performance for
diverse workloads, such as combining general-purpose
processing with specialized accelerators for AI, image
processing, or cryptography.

•	 Examples: NVIDIA Jetson platforms, Qualcomm
Snapdragon SoCs with Hexagon DSPs, and Xilinx Zynq
UltraScale+ MPSoCs.

AI and Machine Learning Acceleration

•	 Overview: Embedded systems are increasingly
integrating hardware accelerators for AI and machine
learning tasks.

•	 Significance: Enables on-device processing of complex
AI algorithms, reducing latency, privacy concerns, and
bandwidth requirements associated with cloud-based
solutions.

•	 Examples: NVIDIA Deep Learning Accelerator (DLA),
Google Edge TPU, and Intel Movidius Neural Compute
Stick.

Security Features

•	 Overview: Embedded systems are incorporating
hardware-based security features to protect
against cyber threats and ensure data integrity and
confidentiality.

4
Pandey S
J. Adv. Res. Embed. Sys. 2024; 11(1)

ISSN: 2395-3802

•	 Significance: Essential for safeguarding sensitive
information and preventing unauthorized access,
especially in IoT devices and critical infrastructure.

•	 Examples: Hardware-based encryption engines, secure
boot mechanisms, hardware-enforced isolation, and
Trusted Platform Modules (TPMs).

Energy Efficiency and Low Power Design

•	 Overview: Energy-efficient design techniques are
crucial for prolonging battery life and reducing
environmental impact in embedded systems.

•	 Significance: Enables longer operation time for battery-
powered devices and reduces heat dissipation, crucial
for thermal management in small form-factor devices.

•	 Examples: Dynamic Voltage and Frequency Scaling
(DVFS), power gating, clock gating, energy harvesting,
and low-power sleep modes.

Edge Computing and IoT Integration

•	 Overview: Edge computing brings computation
closer to data sources, reducing latency, bandwidth
requirements, and reliance on cloud services.

•	 Significance: Enables real-time processing, local
decision-making, and efficient use of network
resources, critical for IoT applications with stringent
latency and reliability requirements.

•	 Examples: Raspberry Pi, Arduino, ESP32, and custom-
designed edge computing platforms.

High-Speed Connectivity

•	 Overview: Embedded systems are adopting high-speed
connectivity standards such as Wi-Fi 6, 5G, and Ethernet
to enable faster data transfer rates and lower latency.

•	 Significance: Facilitates high-bandwidth applications,
streaming multimedia content, real-time sensor data
aggregation, and remote monitoring.

•	 Examples: Qualcomm Snapdragon platforms with
integrated 5G modems, Broadcom Wi-Fi 6 chipsets,
and industrial-grade Ethernet controllers.

Customization and Open-Source Hardware

•	 Overview: Open-source hardware initiatives like RISC-V
enable customization and collaborative development
of embedded hardware designs.

•	 Significance: Empowers developers to create tailored
solutions for specific applications, fostering innovation
and reducing time-to-market.

•	 Examples: SiFive Freedom platforms, HiFive
development boards, and community-driven open-
source hardware projects.

Challenges and Future Directions in Embedded
Hardware Design
Embedded hardware design faces several challenges,

ranging from complexity management to meeting stringent
performance and security requirements. Looking ahead,
addressing these challenges will shape the future direction
of embedded systems. Here are key challenges and potential
future directions:

Design Complexity

•	 Challenge: Embedded systems are becoming
increasingly complex, with growing integration of
functionalities and components on a single chip.

•	 Future Direction: Adoption of advanced design
methodologies like model-based design, modularization,
and system-level synthesis to manage complexity and
improve design productivity.

Real-Time Constraints

•	 Challenge: Many embedded applications require real-
time responsiveness, making it challenging to meet
strict timing requirements.

•	 Future Direction: Development of more efficient
real-time scheduling algorithms, hardware/software
co-design techniques, and tools for worst-case
execution time (WCET) analysis to ensure predictable
performance.

Security Concerns

•	 Challenge: With the proliferation of connected devices,
embedded systems are increasingly vulnerable to cyber
threats, posing risks to data integrity, user privacy, and
system reliability.

•	 Future Direction: Integration of more robust hardware-
based security features, adoption of secure boot
mechanisms, hardware-enforced isolation, and
advancements in side-channel attack mitigation
techniques.

Energy Efficiency

•	 Challenge: Balancing performance requirements
with energy efficiency is crucial, especially in battery-
operated devices and IoT applications.

•	 Future Direction: Continued research into low-power
design techniques, energy harvesting methods, dynamic
power management strategies, and optimization of
power-hungry components like displays and wireless
interfaces.

AI Integration

•	 Challenge: Integrating AI capabilities into embedded
systems introduces challenges related to power
consumption, resource constraints, and algorithm
optimization.

•	 Future Direction: Development of specialized AI
hardware accelerators optimized for embedded
systems, efficient neural network pruning and

5
Pandey S

J. Adv. Res. Embed. Sys. 2024; 11(1)

ISSN: 2395-3802

quantization techniques, and deployment of edge AI
frameworks tailored for resource-constrained devices.

Interoperability and Standards

•	 Challenge: Ensuring interoperability between different
embedded systems and components from various
vendors remains a challenge, hindering seamless
integration and scalability.

•	 Future Direction: Adoption of standardized
communication protocols, middleware frameworks,
and interoperability standards such as OPC UA, MQTT,
and DDS to enable plug-and-play compatibility and
system interoperability.

Reliability and Safety

•	 Challenge: Embedded systems used in safety-critical
applications, such as automotive and medical devices,
require high levels of reliability and safety assurance.

•	 Future Direction: Implementation of rigorous
verification and validation techniques, adoption of
safety standards like ISO 26262 and IEC 61508, and
development of fault-tolerant architectures and
redundancy mechanisms.

Customization and Rapid Prototyping

•	 Challenge: Tailoring embedded systems for specific
applications often involves lengthy design cycles and
high development costs.

•	 Future Direction: Advancements in rapid prototyping
tools, modular hardware platforms, and open-source
hardware initiatives to enable faster iterations,
customization, and innovation.13-16

Conclusion
Embedded hardware design and architectures continue to
evolve rapidly, driven by advancements in semiconductor
technology, emerging application requirements, and
evolving standards. From low-power microcontrollers
to complex heterogeneous systems, the landscape of
embedded hardware offers a diverse range of solutions
for a multitude of applications. Addressing challenges such
as design complexity, real-time constraints, and security
concerns will be crucial for the continued growth and
innovation in this field. As we move forward, collaboration
between hardware and software engineers, along with
interdisciplinary research efforts, will shape the future of
embedded systems.

References
1.	 Castillo S. The Electronic Control System of a Trapped-

Ion Quantum Processor: a Systematic Literature
Review. IEEE Access. 2023 Jun 27.

2.	 Zhang Y, Li L, Lu Z, Jantsch A, Gao M, Pan H, Han F.
A survey of memory architecture for 3D chip multi-

processors. Microprocessors and Microsystems. 2014
Jul 1;38(5):415-30.

3.	 Hennessy JL, Patterson DA. Computer architecture: a
quantitative approach. Elsevier; 2011 Oct 7.

4.	 Yiu J. The Definitive Guide to ARM® Cortex®-M3 and
Cortex®-M4 Processors. Newnes; 2013 Oct 6.

5.	 Wayne W. FPGA-based system design. Pearson
Education India; 2004.

6.	 Mirtalebi M. Embedded Systems Architecture for Agile
Development: A Layers-Based Model. Apress; 2017
Oct 24.

7.	 Shao Y. Tactile Sensing, Information, and Feedback
Via Wave Propagation. Cham: Springer; 2022 Feb 24.

8.	 Lattner C, Adve V. LLVM: A compilation framework
for lifelong program analysis & transformation.
InInternational symposium on code generation and
optimization, 2004. CGO 2004. 2004 Mar 20 (pp. 75-
86). IEEE.

9.	 Furber SB. ARM system-on-chip architecture. pearson
Education; 2000.

10.	 Chu PP. Embedded SOPC design with NIOS II processor
and VHDL examples. John Wiley & Sons; 2011 Aug 29.

11.	 Waterman A, Lee Y, Patterson D, Asanovic K, level
Isa VI, Waterman A, Lee Y, Patterson D. The RISC-V
instruction set manual. Volume I: User-Level ISA’,
version. 2014 May 6;2:1-79.

12.	 Gambier A. Control of large wind energy systems.
Springer International Publishing; 2022.

13.	 Emilio MD. Embedded systems design for high-speed
data acquisition and control. Springer International
Publishing; 2015.

14.	 Sutradhar K, Venkatesh R, Venkatesh P. Smart
Healthcare Services Employing Quantum Internet of
Things on Metaverse. InHealthcare Services in the
Metaverse 2024 (pp. 170-189). CRC Press.

15.	 Festa R. Real-time modeling of electrical drives and
delta robots for digital twin applications.

16.	 Ram M, editor. Mathematical Engineering,
Manufacturing, and Management Sciences. CRC Press,
Taylor & Francis Group; 2019.

