

Review Article

Developments in Embedded Hardware: An Overview

Nimita Singh¹, Kavesh Upadhyay²

^{1,2}Student, Department of Information Technology, Sri Pratap College, Srinagar, India.

INFO

E-mail Id:

singhnamita111@gmail.com

Orcid Id:

<http://orcid.org/0000-0005-8239-734>

How to cite this article:

Singh N, Upadhyay K. Developments in Embedded Hardware: An Overview. *J Adv Res Embed Sys* 2024; 11(1): 6-10.

Date of Submission: 2024-05-02

Date of Acceptance: 2024-06-10

ABSTRACT

Embedded hardware plays a crucial role in powering the technology we rely on every day, from smartphones to industrial automation systems. This review explores recent advancements in embedded hardware technologies, focusing on key developments, emerging trends, and their applications across various domains. It highlights the evolution of embedded hardware from basic microcontrollers to sophisticated System-on-Chip (SoC) solutions, discussing recent breakthroughs such as high-performance processors, AI acceleration, ultra-low power designs, connectivity solutions, and security enhancements. Furthermore, it examines emerging trends like edge computing, customization, functional safety, and the potential integration of quantum computing at the edge. Through a comprehensive overview, this review aims to provide insights into the current state and future directions of embedded hardware technology.

Keywords: Embedded Hardware, Automotive, Consumer Electronics, Industrial IoT, Healthcare, Aerospace, Smart Infrastructure, Energy, Agriculture, Transportation, Logistics, Retail, IoT, Sensors, Real-Time Monitoring

Introduction

Embedded hardware, a cornerstone of modern technology, encompasses a diverse range of computing systems tailored for specific tasks and integrated into various devices and machinery. From the microcontrollers powering everyday appliances to sophisticated System-on-Chip (SoC) solutions driving autonomous vehicles, embedded hardware forms the backbone of countless applications across industries. This review explores the dynamic landscape of embedded hardware, tracing its evolution from rudimentary control systems to highly integrated and specialized computing platforms.

Over the years, advancements in semiconductor technology have propelled embedded hardware to new heights, enabling higher performance, greater energy efficiency, and enhanced connectivity. These innovations have not

only revolutionized consumer electronics but have also transformed industries such as automotive, healthcare, and industrial automation. From the smallest IoT sensors to complex industrial control systems, embedded hardware solutions are driving efficiency, productivity, and innovation.

This review aims to provide a comprehensive overview of recent advancements in embedded hardware technology, covering key developments and emerging trends shaping its trajectory. By examining the latest breakthroughs in processors, AI acceleration, power management, connectivity solutions, and security features, we gain insight into the transformative potential of embedded hardware across diverse applications. Additionally, we explore emerging paradigms like edge computing, customization, and functional safety, which are poised to redefine the capabilities and applications of embedded systems in the coming years. Through this exploration, we aim to highlight

both the challenges and opportunities driving the evolution of embedded hardware and its profound impact on the technological landscape.¹⁻³

Evolution of Embedded Hardware

Embedded hardware has undergone a remarkable evolution since its inception, driven by advancements in semiconductor technology, shrinking form factors, and increasing demand for intelligent, connected devices. The journey of embedded hardware can be divided into several key stages, each marked by significant milestones:

- **Microcontroller Units (MCUs):** In the early days, embedded systems relied on microcontrollers for basic control functions. These compact chips integrated a CPU core, memory, and I/O peripherals on a single chip, making them suitable for a wide range of applications, from simple household appliances to industrial automation.
- **System-on-Chip (SoC) Integration:** The integration of processors, memory, and peripheral interfaces into single chips marked a significant advancement in embedded hardware. SoCs offered higher performance, reduced power consumption, and smaller form factors compared to traditional microcontrollers. This integration facilitated the development of more sophisticated embedded systems, powering devices like smartphones, tablets, and IoT devices.
- **Field-Programmable Gate Arrays (FPGAs):** FPGAs introduced a new level of flexibility and reconfigurability to embedded systems. Unlike fixed-function ASICs, FPGAs could be programmed and reprogrammed to perform specific tasks, making them ideal for prototyping, rapid development, and applications requiring hardware acceleration.
- **System-on-Module (SoM):** The concept of SoMs emerged to simplify the design and development of embedded systems. SoMs encapsulate the core components of an embedded system into a modular package, allowing developers to focus on application-specific functionalities without worrying about the underlying hardware design. SoMs accelerate time-to-market and enable scalability across different product variants.
- **Advanced SoCs and Heterogeneous Computing:** Recent years have seen a proliferation of advanced SoCs with multicore CPUs, GPUs, and dedicated hardware accelerators. These heterogeneous computing platforms are tailored for demanding applications such as artificial intelligence, computer vision, and high-performance computing. They combine general-purpose processing capabilities with specialized accelerators to deliver optimal performance and efficiency.
- **Integration of Connectivity Solutions:** With the rise of the Internet of Things (IoT), embedded systems increasingly require connectivity options such as Wi-Fi, Bluetooth, cellular, and Ethernet. Modern embedded hardware integrates these communication interfaces directly onto the chip, enabling seamless connectivity and data exchange between devices and the cloud.
- **Enhancements in Power Efficiency:** Energy efficiency has become a critical focus in embedded hardware design, driven by the proliferation of battery-powered devices and the need for sustainable solutions. Low-power microcontrollers, advanced power management techniques, and energy-efficient architectures have significantly extended battery life and enabled energy harvesting techniques.
- **Advancements in Security Features:** As embedded systems become more interconnected and handle sensitive data, ensuring security is paramount. Hardware-based security features such as Trusted Platform Modules (TPM), Secure Boot, and hardware-accelerated encryption engines are now standard in embedded hardware, safeguarding against cyber threats and ensuring data integrity.
- **Emergence of Edge Computing Platforms:** The evolution of embedded hardware has paved the way for edge computing platforms, where computational tasks are performed closer to the data source. Edge computing enables low-latency processing, real-time analytics, and reduced bandwidth usage, driving efficiency and responsiveness in distributed systems.^{4,5}

Recent Advancements

Recent years have witnessed significant advancements in embedded hardware technologies, driven by the relentless pursuit of higher performance, energy efficiency, and connectivity. These advancements have propelled embedded systems into new frontiers, enabling innovative applications across industries. Here are some key recent developments:

- **High-Performance Processors:** The demand for higher processing power in embedded systems has led to the development of advanced processor architectures. ARM Cortex-A series, RISC-V, and x86-based processors are delivering unprecedented levels of performance while maintaining energy efficiency. Multi-core designs with integrated GPUs and AI accelerators are becoming commonplace, enabling complex computing tasks in embedded applications.
- **AI and Machine Learning Acceleration:** Embedded AI is revolutionizing various industries by enabling devices to perform intelligent tasks locally. Hardware accelerators optimized for machine learning tasks, such as Nvidia's Jetson series and Google's Edge TPU,

are empowering edge devices with capabilities like object detection, speech recognition, and predictive analytics. These solutions are crucial for applications ranging from smart cameras to autonomous vehicles.

- **Ultra-Low Power Designs:** Energy efficiency remains a top priority in embedded systems, particularly for battery-powered devices and IoT sensors. Recent advancements in process technology, low-power design techniques, and innovative architectures have led to ultra-low power microcontrollers and SoCs capable of operating on minimal power. These solutions extend battery life and enable deployment in remote or energy-constrained environments.
- **Connectivity Solutions:** The proliferation of IoT devices has fueled the demand for robust connectivity options in embedded hardware. Wi-Fi 6, Bluetooth Low Energy (BLE), LoRaWAN, NB-IoT, and 5G technologies are being integrated into embedded platforms, enabling reliable and high-speed communication. Mesh networking protocols further enhance connectivity in large-scale IoT deployments.
- **Security Enhancements:** With the increasing connectivity of embedded devices, security has become a paramount concern. Hardware-based security features such as Trusted Platform Modules (TPM), secure enclaves, and hardware-accelerated cryptographic engines provide robust protection against cyber threats, ensuring data integrity, confidentiality, and device authenticity.
- **Customization and Reconfigurability:** FPGAs and reconfigurable SoCs offer unparalleled flexibility in embedded hardware design. These platforms allow developers to implement custom hardware accelerators and tailor the system architecture to specific application requirements. Customization and reconfigurability enable optimization for performance, power efficiency, and scalability, making them ideal for diverse embedded applications.
- **Edge Computing Platforms:** The paradigm of edge computing is gaining traction, driving the development of embedded hardware platforms optimized for edge deployments. These platforms integrate powerful processors, AI accelerators, and connectivity options, enabling real-time data processing, analytics, and decision-making at the network edge. Edge computing enhances responsiveness, reduces latency, and minimizes bandwidth usage in distributed systems.
- **Quantum-Inspired Computing:** While still in its nascent stages, the integration of quantum-inspired computing capabilities in embedded systems is an emerging trend. Quantum-inspired algorithms and hardware architectures promise to revolutionize certain computational tasks, such as optimization

and cryptography, offering significant performance benefits over classical approaches.^{6, 7}

Emerging Trends

In addition to recent advancements, several emerging trends are shaping the future of embedded hardware, offering new opportunities and challenges for developers and industries alike. These trends reflect the evolving needs of connected devices, intelligent systems, and the growing demand for efficiency and scalability. Here are some of the key emerging trends in embedded hardware:

Edge Computing: Edge computing is revolutionizing how data is processed and managed, bringing computational capabilities closer to the data source. Embedded hardware platforms optimized for edge computing enable real-time data analysis, reduced latency, and bandwidth savings. These platforms support applications such as real-time analytics, AI inferencing, and localized decision-making, making them ideal for IoT, industrial automation, and smart infrastructure deployments.

Customization and Reconfigurability: As embedded systems become more diverse and application-specific, customization and reconfigurability are becoming essential. FPGAs, reconfigurable SoCs, and programmable hardware accelerators allow developers to tailor hardware architectures to specific application requirements. Customization enables optimization for performance, power efficiency, and functional safety, accelerating innovation across industries.

Functional Safety: Safety-critical industries such as automotive, aerospace, and healthcare demand embedded systems that comply with stringent safety standards. Hardware solutions with built-in safety mechanisms, redundancy, and self-testing capabilities are essential to ensure reliable operation in hazardous environments. Functional safety standards such as ISO 26262 and IEC 61508 are driving the development of safety-certified embedded hardware components and systems.

Quantum Computing at the Edge: While still in its early stages, the integration of quantum-inspired computing capabilities in embedded systems holds promise for certain computational tasks. Quantum-inspired algorithms and hardware architectures offer significant performance improvements in optimization, cryptography, and other complex problems. Embedded hardware platforms with quantum-inspired computing capabilities could unlock new possibilities in fields such as logistics, finance, and scientific research.

Energy Harvesting and Sustainable Solutions: With the increasing focus on sustainability, energy harvesting techniques are gaining attention in embedded hardware design. Harvesting energy from sources such as solar,

vibration, or thermal gradients enables self-powered embedded systems, reducing reliance on batteries and extending device lifetime. Energy-efficient architectures, low-power components, and intelligent power management techniques further contribute to sustainable embedded solutions.

Multi-Modal Sensing and Fusion: Embedded systems are increasingly incorporating multiple sensors to capture diverse types of data from the environment. Fusion of data from sensors such as cameras, LiDAR, radar, and environmental sensors enables richer perception and context awareness in applications such as autonomous vehicles, robotics, and smart cities. Embedded hardware platforms capable of processing and fusing multi-modal sensor data in real-time are in high demand.

Secure and Trustworthy Computing: With the proliferation of connected devices, ensuring security and trustworthiness is critical. Embedded hardware platforms are integrating hardware-based security features such as secure enclaves, hardware root of trust, and tamper-resistant elements to protect against cyber threats and ensure data integrity and confidentiality. Trustworthy computing architectures enable secure boot, secure firmware updates, and secure communication, essential for IoT, automotive, and industrial applications.

Neuromorphic Computing: Neuromorphic computing, inspired by the human brain's neural networks, is an emerging trend in embedded hardware. Neuromorphic hardware architectures mimic the brain's parallel processing and synaptic connections, enabling efficient pattern recognition, learning, and adaptation in embedded systems. Neuromorphic computing holds promise for applications such as pattern recognition, anomaly detection, and cognitive computing in edge devices.^{8,9}

Applications Across Industries

Embedded hardware technology finds applications across a wide range of industries, enabling innovation, automation, and efficiency enhancements. From consumer electronics to critical infrastructure, embedded systems play a pivotal role in shaping the modern world. Here are some key industries where embedded hardware solutions are making a significant impact:

- **Automotive:** Embedded hardware is at the heart of modern vehicles, powering advanced driver-assistance systems (ADAS), infotainment systems, and vehicle control units. Embedded systems control engine management, braking, steering, and provide connectivity features such as GPS navigation and telematics. Emerging applications include autonomous driving, vehicle-to-everything (V2X) communication, and predictive maintenance systems.

- **Consumer Electronics:** Embedded hardware is ubiquitous in consumer electronics, including smartphones, tablets, smartwatches, and smart home devices. Processors, sensors, and connectivity modules enable features like touchscreens, voice recognition, biometric authentication, and IoT connectivity. Wearable electronics, in particular, rely heavily on embedded systems for health monitoring, fitness tracking, and smart notifications.
- **Industrial IoT (IIoT):** In industrial settings, embedded hardware powers IoT devices, sensors, and control systems for monitoring and optimizing processes. Industrial automation, predictive maintenance, asset tracking, and remote monitoring are key applications. Embedded systems enable real-time data collection, analysis, and control, leading to improved efficiency, productivity, and safety in manufacturing, logistics, and energy sectors.
- **Healthcare:** Embedded hardware plays a crucial role in medical devices and healthcare systems, enabling diagnostics, patient monitoring, and treatment. Embedded systems power devices such as patient monitors, infusion pumps, medical imaging equipment, and wearable health trackers. Advancements in embedded hardware support telemedicine, remote patient monitoring, and personalized healthcare solutions.
- **Aerospace and Defense:** Embedded systems are integral to aerospace and defense applications, powering avionics, unmanned aerial vehicles (UAVs), and defense systems. Flight control systems, navigation, communication, and mission-critical operations rely on embedded hardware for reliability and performance. Embedded systems also support surveillance, reconnaissance, and situational awareness in defense applications.
- **Smart Infrastructure:** Embedded hardware enables the development of smart cities, buildings, and infrastructure. Smart sensors, actuators, and embedded controllers monitor and control various systems such as lighting, HVAC, energy management, and traffic flow. Embedded systems facilitate energy efficiency, waste reduction, and improved urban services in smart city deployments.
- **Energy and Utilities:** Embedded hardware solutions are deployed in energy generation, distribution, and management systems. Smart meters, grid monitoring systems, and SCADA (Supervisory Control and Data Acquisition) systems utilize embedded hardware for real-time monitoring, control, and optimization of energy networks. Embedded systems support renewable energy integration, demand response, and grid resilience.

- **Agriculture:** Embedded systems are increasingly used in precision agriculture for monitoring and automation. IoT sensors, GPS, and embedded controllers gather data on soil moisture, temperature, crop health, and environmental conditions. Embedded hardware enables precision irrigation, crop monitoring, and autonomous farming equipment, leading to increased yields and resource efficiency.
- **Transportation and Logistics:** In transportation and logistics, embedded hardware powers vehicle tracking, fleet management, and logistics optimization systems. GPS navigation, RFID tracking, and telematics systems provide real-time visibility into assets, improving route planning, delivery efficiency, and supply chain management.
- **Retail and Hospitality:** Embedded systems enhance customer experiences in retail and hospitality industries through self-service kiosks, point-of-sale (POS) systems, digital signage, and smart inventory management solutions. Embedded hardware enables personalized services, inventory tracking, and seamless transactions, enhancing operational efficiency and customer satisfaction¹¹⁻¹⁵

Conclusion

Embedded hardware technology continues to advance at a rapid pace, driven by the demand for smarter, more connected devices across various industries. From high-performance processors to AI acceleration and security enhancements, recent developments promise to unlock new possibilities and applications for embedded systems. As we move forward, addressing challenges such as power efficiency, security, and scalability will be key to realizing the full potential of embedded hardware in shaping our future technology landscape.

References

1. SAEED II, Ibrahim I. An instrument to measure students' readiness for embedded system design course (Doctoral dissertation, Universiti Teknologi Malaysia).
2. Saha HN, Mandal A, Sinha A. Recent trends in the Internet of Things. In 2017 IEEE 7th annual computing and communication workshop and conference (CCWC) 2017 Jan 9 (pp. 1-4). IEEE.
3. Patterson DA, Hennessy JL. Computer organization and design: the hardware/software interface (the morgan kaufmann series in computer architecture and design). Paperback, Morgan Kaufmann Publishers. 2013 Oct.
4. Syu JH, Lin JC, Srivastava G, Yu K. A comprehensive survey on artificial intelligence empowered edge computing on consumer electronics. IEEE Transactions on Consumer Electronics. 2023 Sep 22.
5. Oks SJ, Zöllner S, Jalowski M, Fuchs J, Mösllein KM. Embedded vision device integration via OPC UA: Design and evaluation of a neural network-based monitoring system for Industry 4.0. Procedia CIRP. 2021 Jan 1;100:43-8.
6. Prakash KB, Padmanaban S, Mitolo M. Smart and Power Grid Systems—Design Challenges and Paradigms. River Publishers; 2023 Mar 10.
7. Valvano, J. (2020). Embedded Systems: Introduction to Arm Cortex-M Microcontrollers. Cengage Learning.
8. Al-Ghaili AM, Gunasekaran SS, Jamil N, Alyasseri ZA, Al-Hada NM, Ibrahim ZA, Bakar AA, Kasim H, Hosseini E, Omar R, Kasmani RM. A review on role of image processing techniques to enhancing security of IoT applications. IEEE Access. 2023 Sep 7.
9. Hennessy JL, Patterson DA. Computer architecture: a quantitative approach. Elsevier; 2011 Oct 7.
10. Feng H, Jia G, Lin Y, Dai JS, editors. Jubilee Review: The 65 Years of the ASME Machine Design Award (1958–2023). Journal of Mechanical Design. 2023 Aug 1;145(8):080301.
11. Chen W, Wang X, Sun Y, Hu Q, Huang L, Jiang Y, Singh AK, Mak T, Yang M. Evolution of publications, subjects, and co-authorships in network-on-chip research from a complex network perspective. IEEE Access. 2021 Oct 26;9:149399-422.
12. Eibeck A, Shaocong Z, Mei Qi L, Kraft M. Research data supporting" A Simple and Efficient Approach to Unsupervised Instance Matching and its Application to Linked Data of Power Plants".
13. Mao Y, You C, Zhang J, Huang K, Letaief KB. Mobile edge computing: Survey and research outlook. arXiv preprint arXiv:1701.01090. 2017 Jan:1-37.
14. Mitra T, editor. Reimagining ACM Transactions on Embedded Computing Systems (TECS). ACM Transactions on Embedded Computing Systems (TECS). 2021 Apr 23;20(3):1-3.
15. Kang CK, Mendis HR, Lin CH, Chen MS, Hsiu PC. More is less: Model augmentation for intermittent deep inference. ACM Transactions on Embedded Computing Systems (TECS). 2022 Oct 8;21(5):1-26.