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Manual identification of red chillies is often labour-intensive and 
inconsistent in large-scale harvesting, highlighting the need for 
automated, real-time agricultural systems. This study presents a 
lightweight red chilli detection system using a convolutional neural 
network (CNN) quantised to 8-bit TensorFlow Lite format and deployed 
on the PYNQ-Z2 FPGA board. The model classifies images into three 
categories: red chilli, plant without chilli, and unknown. Inference 
results are displayed using onboard LEDs and the PUTTY serial terminal, 
with LED 2 indicating red chilli, LED 1 for plant, and all LEDs off for 
unknown or low-confidence predictions. The system achieved a final 
training accuracy of 97.11%, a validation accuracy of 96.41%, and a test 
accuracy of 94.64%, demonstrating reliable classification performance 
with good generalisation and without signs of overfitting. Operating 
entirely offline without Jupyter or Ethernet, this low-power embedded 
AI implementation offers a practical, real-time alternative to manual 
chilli detection for smart agriculture applications.

Keywords: Red chili detection, PYNQ-Z2, Convolutional Neural 
Network, TensorFlow Lite, Smart agriculture, Real-time classification, 
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Introduction
In recent years, the combination of artificial intelligence 
with embedded systems has created new opportunities in 
precision agriculture. One such use case is the automated 
identification of ripe red chillies in crop images, which 
can greatly minimise the manual labour involved in the 
harvesting process. Farmers have traditionally depended 
on visual checks to spot ripe chillies, a technique that is 
labour-intensive, time-consuming, and often inconsistent 
due to human error or varying environmental factors.

Accurate and timely detection of red chillies is essential 
for enhancing crop yield and ensuring quality. Although 
computer vision methods and deep learning models 
have demonstrated encouraging outcomes in agricultural 

image classification, many current systems require high-
performance computing resources or cloud processing, 
which may not be practical in field settings. Consequently, 
there is an increasing need for low-power, real-time, offline 
classification solutions that can be executed directly on 
embedded hardware.

Numerous studies have investigated the utilisation of 
convolutional neural networks (CNNs) for tasks such as object 
detection and plant disease classification. Nevertheless, few 
have tackled the challenge of implementing these models on 
low-resource platforms like FPGAs for agricultural purposes. 
Furthermore, existing methods often lack user-friendly 
feedback systems like LED indicators or serial outputs to 
present classification results in real time.
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Literature Review
 Object detection frameworks like YOLOv5 have been 
employed for recognising red chilli, achieving high 
accuracy and real-time performance on GPU-equipped 
systems. Nevertheless, these models demand considerable 
computational resources, rendering them impractical for 
resource-constrained embedded platforms.1

On the other hand, Convolutional Neural Networks 
(CNNs) have been widely adopted for classifying fruits 
and vegetables based on visual traits such as colour, shape, 
and texture. Fruit classification systems utilising CNNs have 
shown effectiveness even in challenging conditions like 
varying lighting and complex backgrounds. These findings 
underscore the flexibility of CNNs and their potential to 
automate agricultural tasks in uncontrolled environments.2

In contrast, traditional machine learning methods like 
Support Vector Machines (SVMs) and Decision Trees 
have been used to assess the ripeness and quality of chilli 
peppers. Although these methods provide interpretability 
and have lower computational needs, they lack the feature 
extraction capabilities and scalability that deep learning 
models offer.3

The study demonstrates that convolutional neural networks 
(CNNs), as well as quantised (QNN) and binary neural 
networks (BNN), can be effectively implemented on FPGA-
based platforms like the PYNQ-Z2 for pattern recognition 
tasks. The work shows that quantisation reduces memory 
usage and computational requirements while maintaining 
high classification accuracy for datasets such as MNIST and 
CIFAR-10. It also highlights that FPGA deployment enables 
low-power, real-time inference, making these methods 
suitable for embedded IoT applications.4

Despite these advancements, there is still a notable research 
gap regarding the deployment of quantised CNN models 
for real-time red chilli detection using embedded FPGA 
platforms. This study aims to fill this gap by developing 
a CNN-based red chilli detection system on the PYNQ-Z2 
board, with real-time classification results exhibited through 
onboard LEDs.5-8

Method
The overall workflow of the proposed system is illustrated 
in Figure 1. The process begins with data collection and 
preprocessing, followed by CNN model training using the 
prepared dataset. After training, the model is quantised to 
INT8 format for efficient execution on resource-constrained 
hardware. The quantised model is deployed onto the 
PYNQ-Z2 board, where offline inference is performed using 
the TensorFlow Lite runtime. Input images are selected 
sequentially from memory, and the model predicts the 
class label. Based on the prediction, the result is displayed 

through onboard LEDs. Additionally, the classification label 
along with its confidence score is printed on the PUTTY serial 
terminal. This dual-output mechanism ensures both visual 
and textual confirmation of results, making the system 
effective for real-time agricultural monitoring along with 
its confidence score is printed on the PUTTY serial terminal. 
This dual-output mechanism ensures both visual and textual 
confirmation of results, making the system effective for 
real-time agricultural monitoring.

Figure 1.block diagram of redchili classification 
system

Dataset preparation
The dataset comprises approximately 600 RGB images, 
collected from Google image searches and publicly available 
agricultural image repositories. The images are categorised 
into two classes: red chilli and plant (without chilli). All 
images were resized to 64×64 pixels to reduce model 
complexity and enable fast inference on the PYNQ-Z2 
board. To improve model robustness, data augmentation 
techniques such as flipping, rotation, and brightness 
adjustment were applied.

CNN Architecture
The Convolutional Neural Network (CNN) that has been 
proposed is tailored to be compact and optimised for 
real-time image classification on the PYNQ-Z2 embedded 
platform. This model architecture strikes a balance between 
accuracy and computational efficiency, making it ideal for 
deployment at the edge. The architecture is composed of 
the following layers:

•	 Input Layer: Accepts RGB images that are resized to 
dimensions of 64×64×3.

•	 Convolutional Layer 1: Applies 32 filters of size 3×3, 
followed by ReLU activation to capture basic visual 
features such as edges and color patterns.

•	 Max Pooling Layer 1: Reduces spatial dimensions 
through a 2×2 pooling window, aiding in the down 
sampling of the feature map and diminishing 
computational demands.

•	 Convolutional Layer 2: Utilises 64 filters of size 3×3 
with ReLU activation to discern more intricate patterns 
and shapes.
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•	 Max Pooling Layer 2: Another 2×2 pooling operation 
is performed to further decrease dimensionality.

•	 Flatten Layer: Transforms the 2D feature maps into 
a 1D feature vector that is compatible for input into 
the dense layers.

•	 Dense Layer: Comprises 64 neurons activated by RELU 
to execute high-level feature abstraction.

•	 Output Layer: A softmax layer with 2 neurons, 
representing the categories Red Chili and Plant. The 
softmax function yields class probabilities, which 
are also used to ascertain if the prediction is below 
a confidence threshold (resulting in an “Unknown” 
classification).

This CNN is regarded as lightweight due to its shallow 
architecture, constrained number of filters, and minimal 
image input size. These design choices ensure the model 
can be quantized and executed efficiently on low-power 
hardware such as the PYNQ-Z2. The implementation and 
training of the model were conducted using TensorFlow 
with the Keras API, which allows seamless conversion to 
TensorFlow Lite format for embedded deployment.

Training
The CNN model was trained using TensorFlow with Keras, 
employing the Adam optimiser and categorical cross-
entropy as the loss function. Training was performed for 13 
epochs with a batch size of 16. Real-time data augmentation 
was applied to improve generalisation. The model showed 
high accuracy and low validation loss, confirming its ability 
to distinguish between Red Chilli and Plant classes. This 
trained model was then prepared for quantisation to enable 
efficient embedded deployment.

Model Quantization
To enable real-time inference on the PYNQ-Z2 board, the 
trained CNN model was converted to TensorFlow Lite 
format and quantized to INT8 precision. This significantly 
reduced the model size and improved inference speed 
while maintaining classification accuracy. 

Hardware Deployment
The quantized model was deployed on the PYNQ-Z2 FPGA 
board, which combines a Zynq-7000 SoC with an ARM 
Cortex-A9 processor. Inference is performed offline using 
the tflite_runtime interpreter. LEDs display classification 
results: LED 2 for Red Chilli, LED 1 for Plant, and all OFF for 
Unknown. The classification output and confidence score 
are also displayed on the PUTTY serial terminal, providing 
dual-mode feedback.

Results And Discussion
Figures 2–4 demonstrate the end-to-end red chili 
classification process, including the input image, terminal 
prediction output, and the corresponding LED response 
on the PYNQ-Z2 board.

Figures 5–7 illustrate the successful classification of a plant 
image, with accurate terminal output and LD1 LED indication 
on the PYNQ-Z2 board.

Figures 8–10 illustrate the correct identification of an 
unknown image, where the model’s confidence score fell 
below the set threshold. The output was displayed on the 
PUTTY terminal, and no LED was activated on the PYNQ-Z2 
board, confirming the “Unknown” classification.

Figure 2.Input image of red chili
Figure 3.LED glowing for red chili on PYNQ-Z2

Figure 4.Terminal output for red chili
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Figure 5.Input image of plant
Figure 6.LED glowing for plant on PYNQ-Z2

Figure 7.Terminal output for plant

Figure 8.Input image
Figure 9.LED off for unknown class

Figure 10.Terminal output



5
Shivani K & Savithri T S

J. Adv. Res. Embed. Sys. 2025; 12(3&4)

ISSN: 2395-3802

Model Performance Evaluation
The plots illustrate the training, validation, and testing 
curves for both loss and accuracy across 28 epochs. The 
loss curve shows a clear downward trend in training loss, 
confirming that the model effectively learns and reduces 
error over time. While the validation and test losses exhibit 
some fluctuations during the initial epochs, they stabilize 
in the later stages and follow a decreasing trend, indicating 
that the model generalizes well to unseen data.

For accuracy, the training performance improves steadily 
and reaches above 97% by the final epoch. Both validation 
and test accuracies closely follow the training curve, 
achieving 96.41% and 94.64%, respectively. The small 
variations observed in validation and test accuracies are 
natural and can be attributed to dataset diversity and 
evaluation on unseen images. Importantly, the test data 
used here is entirely separate from the training set, ensuring 
that the reported performance reflects true generalization 
rather than memorization.

Overall, the metrics confirm that the model achieves 
a strong balance between learning and generalization, 

with no evidence of severe overfitting. These outcomes 
validate the robustness of the proposed lightweight CNN 
model and highlight its suitability for efficient deployment 
on the PYNQ-Z2 FPGA platform for real-time agricultural 
applications such as red chili detection (Figure 11-12).

The CNN model demonstrates strong capability in 
distinguishing between the two main classes. For red_
chili, the model achieved a precision of 97%, showing 
that most predictions for chili were correct. However, the 
recall of 91% indicates that some chili samples were not 
detected, which could be due to variations such as lighting 
or background noise. For the plant class, both precision 
(97%) and recall (96%) were high, showing that the model 
performs consistently well in identifying plant samples.

The model achieved 91% for red_chili and 96% for plant. 
The overall test accuracy of 96% reflects that the model is 
highly reliable. These results suggest the system is effective 
for practical use, though future improvements could focus 
on further boosting sensitivity to red chili to minimize 
missed detections.

Figure 11.Training and Validation Accuracy/Loss Curves

Figure 12. Classification Report
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Conclusion
This work presents a red chili classification system using 
a custom CNN model deployed on the PYNQ-Z2 FPGA 
board. The model achieved strong performance with a 
precision of 0.9733 for red chili and an overall test accuracy 
of 0.9621, demonstrating effective classification of red chili 
and plant images. Training and validation curves indicate 
stable learning behavior without signs of overfitting.For 
the red chili class, a recall of 0.9125 shows that most chili 
samples were correctly detected, though a small portion 
were misclassified as plant. The plant class achieved 
balanced results with a precision of 0.9744 and recall of 
0.9620, reflecting consistent and reliable classification. The 
system operates offline, responds to hardware switches, and 
outputs results via LEDs, making it suitable for embedded 
smart agriculture applications. Future improvements may 
focus on further enhancing recall for red chili, extending 
the model to object detection, and integrating with robotic 
systems for automated chili harvesting.

Acknowledgement
The hardware tool used for this research paper, the PYNQ-Z2 
board, is provided by MeitY under the C2S project titled 
“Development of SoC system with vision-based UAV and 
Remote Mobile arm for Precision Agriculture”, JNTUHCEH. 

References
1.	 Ram PP, Yaswanth KV, Kamepalli S, Sankar BS, Madupalli 

M. Deep learning model yolov5 for red chilies detection 
from chilly crop images. In2023 IEEE 8th International 
Conference for Convergence in Technology (I2CT) 2023 
Apr 7 (pp. 1-6). IEEE.

2.	 Jmour N, Zayen S, Abdelkrim A. Convolutional neural 
networks for image classification. In2018 international 
conference on advanced systems and electric 
technologies (IC_ASET) 2018 Mar 22 (pp. 397-402). IEEE.

3.	 Ariyanto A, Djamal EC, Ilyas R. Personality identification 
of palmprint using convolutional neural networks. 
In2018 International Symposium on Advanced 
Intelligent Informatics (SAIN) 2018 Aug 29 (pp. 90-
95). IEEE.

4.	 Biswal MR, Delwar TS, Siddique A, Behera P, Choi Y, 
Ryu JY. Pattern classification using quantized neural 
networks for FPGA-Based low-power IoT devices. 
Sensors. 2022 Nov 10;22(22):8694.

5.	 Marin A, Radoi E. Image-based fruit recognition and 
classification. In2022 21st RoEduNet Conference: 
Networking in Education and Research (RoEduNet) 
2022 Sep 15 (pp. 1-4). IEEE.p.111–116.doi:10.1109/
RoEduNet57163.2022.9921050 

6.	 Vasavi P, Punitha A, Rao TV. Chili crop disease prediction 
using machine learning algorithms. Revue d’Intelligence 
Artificielle. 2023 Jun 1;37(3):727.

7.	 Zheng J, Lv Z, Li D, Lu C, Zhang Y, Fu L, Huang X, Huang 
J, Chen D, Zhang J. FPGA-Based Low-Power High-
Performance CNN Accelerator Integrating DIST for 
Rice Leaf Disease Classification. Electronics. 2025 Apr 
22;14(9):1704.

8.	 Sledevič T, Serackis A, Plonis D. FPGA implementation 
of a convolutional neural network and its application 
for pollen detection upon entrance to the beehive. 
Agriculture. 2022 Nov 4;12(11):1849.

9.	 Wu C, Wang M, Chu X, Wang K, He L. Low-precision 
floating-point arithmetic for high-performance 
FPGA-based CNN acceleration. ACM Transactions on 
Reconfigurable Technology and Systems (TRETS). 2021 
Nov 9;15(1):1-21.


