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ABSTRACT

Manual identification of red chillies is often labour-intensive and
inconsistent in large-scale harvesting, highlighting the need for
automated, real-time agricultural systems. This study presents a
lightweight red chilli detection system using a convolutional neural
network (CNN) quantised to 8-bit TensorFlow Lite format and deployed
on the PYNQ-Z2 FPGA board. The model classifies images into three
categories: red chilli, plant without chilli, and unknown. Inference
results are displayed using onboard LEDs and the PUTTY serial terminal,
with LED 2 indicating red chilli, LED 1 for plant, and all LEDs off for
unknown or low-confidence predictions. The system achieved a final
training accuracy of 97.11%, a validation accuracy of 96.41%, and a test
accuracy of 94.64%, demonstrating reliable classification performance
with good generalisation and without signs of overfitting. Operating
entirely offline without Jupyter or Ethernet, this low-power embedded
Al implementation offers a practical, real-time alternative to manual
chilli detection for smart agriculture applications.

Keywords: Red chili detection, PYNQ-Z2, Convolutional Neural
Network, TensorFlow Lite, Smart agriculture, Real-time classification,
FPGA, LED output.

Introduction

image classification, many current systems require high-
performance computing resources or cloud processing,

In recent years, the combination of artificial intelligence
with embedded systems has created new opportunities in
precision agriculture. One such use case is the automated
identification of ripe red chillies in crop images, which
can greatly minimise the manual labour involved in the
harvesting process. Farmers have traditionally depended
on visual checks to spot ripe chillies, a technique that is
labour-intensive, time-consuming, and often inconsistent
due to human error or varying environmental factors.

Accurate and timely detection of red chillies is essential
for enhancing crop yield and ensuring quality. Although
computer vision methods and deep learning models
have demonstrated encouraging outcomes in agricultural

which may not be practical in field settings. Consequently,
thereis an increasing need for low-power, real-time, offline
classification solutions that can be executed directly on
embedded hardware.

Numerous studies have investigated the utilisation of
convolutional neural networks (CNNs) for tasks such as object
detection and plant disease classification. Nevertheless, few
have tackled the challenge of implementing these models on
low-resource platforms like FPGAs for agricultural purposes.
Furthermore, existing methods often lack user-friendly
feedback systems like LED indicators or serial outputs to
present classification results in real time.
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Literature Review

Object detection frameworks like YOLOvVS5 have been
employed for recognising red chilli, achieving high
accuracy and real-time performance on GPU-equipped
systems. Nevertheless, these models demand considerable
computational resources, rendering them impractical for
resource-constrained embedded platforms.?

On the other hand, Convolutional Neural Networks
(CNNs) have been widely adopted for classifying fruits
and vegetables based on visual traits such as colour, shape,
and texture. Fruit classification systems utilising CNNs have
shown effectiveness even in challenging conditions like
varying lighting and complex backgrounds. These findings
underscore the flexibility of CNNs and their potential to
automate agricultural tasks in uncontrolled environments.?

In contrast, traditional machine learning methods like
Support Vector Machines (SVMs) and Decision Trees
have been used to assess the ripeness and quality of chilli
peppers. Although these methods provide interpretability
and have lower computational needs, they lack the feature
extraction capabilities and scalability that deep learning
models offer.3

The study demonstrates that convolutional neural networks
(CNNs), as well as quantised (QNN) and binary neural
networks (BNN), can be effectively implemented on FPGA-
based platforms like the PYNQ-Z2 for pattern recognition
tasks. The work shows that quantisation reduces memory
usage and computational requirements while maintaining
high classification accuracy for datasets such as MNIST and
CIFAR-10. It also highlights that FPGA deployment enables
low-power, real-time inference, making these methods
suitable for embedded IoT applications.*

Despite these advancements, there is still a notable research
gap regarding the deployment of quantised CNN models
for real-time red chilli detection using embedded FPGA
platforms. This study aims to fill this gap by developing
a CNN-based red chilli detection system on the PYNQ-Z2
board, with real-time classification results exhibited through
onboard LEDs.>®

Method

The overall workflow of the proposed system is illustrated
in Figure 1. The process begins with data collection and
preprocessing, followed by CNN model training using the
prepared dataset. After training, the model is quantised to
INT8 format for efficient execution on resource-constrained
hardware. The quantised model is deployed onto the
PYNQ-Z2 board, where offline inference is performed using
the TensorFlow Lite runtime. Input images are selected
sequentially from memory, and the model predicts the
class label. Based on the prediction, the result is displayed
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through onboard LEDs. Additionally, the classification label
along with its confidence score is printed on the PUTTY serial
terminal. This dual-output mechanism ensures both visual
and textual confirmation of results, making the system
effective for real-time agricultural monitoring along with
its confidence score is printed on the PUTTY serial terminal.
This dual-output mechanism ensures both visual and textual
confirmation of results, making the system effective for
real-time agricultural monitoring.

DATA DATA
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CNNMODEL MODEL
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INPUT IMAGE
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Figure |.block diagram of redchili classification
system

Dataset preparation

The dataset comprises approximately 600 RGB images,
collected from Google image searches and publicly available
agricultural image repositories. The images are categorised
into two classes: red chilli and plant (without chilli). All
images were resized to 64x64 pixels to reduce model
complexity and enable fast inference on the PYNQ-Z2
board. To improve model robustness, data augmentation
techniques such as flipping, rotation, and brightness
adjustment were applied.

CNN Architecture

The Convolutional Neural Network (CNN) that has been
proposed is tailored to be compact and optimised for
real-time image classification on the PYNQ-Z2 embedded
platform. This model architecture strikes a balance between
accuracy and computational efficiency, making it ideal for
deployment at the edge. The architecture is composed of
the following layers:

e Input Layer: Accepts RGB images that are resized to
dimensions of 64x64x3.

e Convolutional Layer 1: Applies 32 filters of size 3x3,
followed by RelLU activation to capture basic visual
features such as edges and color patterns.

e Max Pooling Layer 1: Reduces spatial dimensions
through a 2x2 pooling window, aiding in the down
sampling of the feature map and diminishing
computational demands.

e Convolutional Layer 2: Utilises 64 filters of size 3x3
with ReLU activation to discern more intricate patterns
and shapes.
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e Max Pooling Layer 2: Another 2x2 pooling operation
is performed to further decrease dimensionality.

e Flatten Layer: Transforms the 2D feature maps into
a 1D feature vector that is compatible for input into
the dense layers.

e Dense Layer: Comprises 64 neurons activated by RELU
to execute high-level feature abstraction.

e Qutput Layer: A softmax layer with 2 neurons,
representing the categories Red Chili and Plant. The
softmax function yields class probabilities, which
are also used to ascertain if the prediction is below
a confidence threshold (resulting in an “Unknown”
classification).

This CNN is regarded as lightweight due to its shallow
architecture, constrained number of filters, and minimal
image input size. These design choices ensure the model
can be quantized and executed efficiently on low-power
hardware such as the PYNQ-Z2. The implementation and
training of the model were conducted using TensorFlow
with the Keras API, which allows seamless conversion to
TensorFlow Lite format for embedded deployment.

Training

The CNN model was trained using TensorFlow with Keras,
employing the Adam optimiser and categorical cross-
entropy as the loss function. Training was performed for 13
epochs with a batch size of 16. Real-time data augmentation
was applied to improve generalisation. The model showed
high accuracy and low validation loss, confirming its ability
to distinguish between Red Chilli and Plant classes. This
trained model was then prepared for quantisation to enable
efficient embedded deployment.

Model Quantization

To enable real-time inference on the PYNQ-Z2 board, the
trained CNN model was converted to TensorFlow Lite
format and quantized to INT8 precision. This significantly
reduced the model size and improved inference speed
while maintaining classification accuracy.

Hardware Deployment

The quantized model was deployed on the PYNQ-Z2 FPGA
board, which combines a Zyng-7000 SoC with an ARM
Cortex-A9 processor. Inference is performed offline using
the tflite_runtime interpreter. LEDs display classification
results: LED 2 for Red Chilli, LED 1 for Plant, and all OFF for
Unknown. The classification output and confidence score
are also displayed on the PUTTY serial terminal, providing
dual-mode feedback.

Results And Discussion

Figures 2—4 demonstrate the end-to-end red chili
classification process, including the input image, terminal
prediction output, and the corresponding LED response
on the PYNQ-Z2 board.

Figures 5—7 illustrate the successful classification of a plant
image, with accurate terminal output and LD1 LED indication
on the PYNQ-Z2 board.

Figures 8-10 illustrate the correct identification of an
unknown image, where the model’s confidence score fell
below the set threshold. The output was displayed on the
PUTTY terminal, and no LED was activated on the PYNQ-Z2
board, confirming the “Unknown” classification.

Figure 2.Input image of red chili
Figure 3.LED glowing for red chili on PYNQ-Z2

Figure 4.Terminal output for red chili
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Figure 5.Input image of plant
Figure 6.LED glowing for plant on PYNQ-Z2

Figure 8.Input image
Figure 9.LED off for unknown class
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Figure 10.Terminal output
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Model Performance Evaluation

The plots illustrate the training, validation, and testing
curves for both loss and accuracy across 28 epochs. The
loss curve shows a clear downward trend in training loss,
confirming that the model effectively learns and reduces
error over time. While the validation and test losses exhibit
some fluctuations during the initial epochs, they stabilize
in the later stages and follow a decreasing trend, indicating
that the model generalizes well to unseen data.

For accuracy, the training performance improves steadily
and reaches above 97% by the final epoch. Both validation
and test accuracies closely follow the training curve,
achieving 96.41% and 94.64%, respectively. The small
variations observed in validation and test accuracies are
natural and can be attributed to dataset diversity and
evaluation on unseen images. Importantly, the test data
used here is entirely separate from the training set, ensuring
that the reported performance reflects true generalization
rather than memorization.

Overall, the metrics confirm that the model achieves
a strong balance between learning and generalization,

with no evidence of severe overfitting. These outcomes
validate the robustness of the proposed lightweight CNN
model and highlight its suitability for efficient deployment
on the PYNQ-Z2 FPGA platform for real-time agricultural
applications such as red chili detection (Figure 11-12).

The CNN model demonstrates strong capability in
distinguishing between the two main classes. For red_
chili, the model achieved a precision of 97%, showing
that most predictions for chili were correct. However, the
recall of 91% indicates that some chili samples were not
detected, which could be due to variations such as lighting
or background noise. For the plant class, both precision
(97%) and recall (96%) were high, showing that the model
performs consistently well in identifying plant samples.

The model achieved 91% for red_chili and 96% for plant.
The overall test accuracy of 96% reflects that the model is
highly reliable. These results suggest the system is effective
for practical use, though future improvements could focus
on further boosting sensitivity to red chili to minimize
missed detections.

Accuracy (Train vs Val vs Test)

1.0 4

0.9 4

o8

0.7 4

0.6

o.s

o9 4 — Train Acc

val Acc
0.3 Test Acc
o s 10 1s 20 2s

Loss (Train vs Val vs Test)

- Train Loss
val Loss
2.5 —— Test Loss

Figure | 1.Training and Validation Accuracy/Loss Curves

Class: red_chili

Precision: ©.9733

Recall: 9.9125
Fl-score: ©.9419
Support: 80.0

Class: plant
Precision: ©.9744

Recall: ©.9620
Fl-score: ©.9682
Support: 79.0

[Step 7.5] Classification Report (Filtered):

Accuracy for plant: ©.9620
Accuracy for red_chili: ©.9125

Overall Test Accuracy: 0.9621

Figure 12. Classification Report
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Conclusion

This work presents a red chili classification system using
a custom CNN model deployed on the PYNQ-Z2 FPGA
board. The model achieved strong performance with a
precision of 0.9733 for red chiliand an overall test accuracy
of 0.9621, demonstrating effective classification of red chili
and plant images. Training and validation curves indicate
stable learning behavior without signs of overfitting.For
the red chili class, a recall of 0.9125 shows that most chili
samples were correctly detected, though a small portion
were misclassified as plant. The plant class achieved
balanced results with a precision of 0.9744 and recall of
0.9620, reflecting consistent and reliable classification. The
system operates offline, responds to hardware switches, and
outputs results via LEDs, making it suitable for embedded
smart agriculture applications. Future improvements may
focus on further enhancing recall for red chili, extending
the model to object detection, and integrating with robotic
systems for automated chili harvesting.
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