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Precision medicine is transforming healthcare by tailoring treatments to 
the unique genetic, phenotypic, and lifestyle characteristics of patients. 
Artificial Intelligence (AI), particularly machine learning (ML) and deep 
learning (DL), has emerged as a crucial enabler of predictive modelling 
in precision medicine, facilitating the development of personalised care 
pathways. This paper reviews state-of-the-art approaches in AI-driven 
predictive modelling, discusses challenges, and proposes a framework 
for integrating multi-omics data, clinical records, and real-time patient 
monitoring to optimise individual treatment outcomes. Simulation 
studies and case examples demonstrate AI’s potential to predict disease 
progression, optimise drug regimens, and reduce healthcare costs.
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Introduction 
Precision medicine aims to move beyond the “one size 
fits all” approach by incorporating biological, clinical, and 
environmental data for personalised health care. In today’s 
health care environment, we are seeing an increasing 
volume of complex data types influencing our understanding 
of health care, including electronic health records (EHR), 
genomic sequencing, and wearable technology. AIs can help 
us in understanding this complexity by identifying patterns 
and generating predictive insights.1 This paper will cover:

•	 Examples of AI use in precision medicine.
•	 Frameworks for predictive modelling in patient-specific 

care pathways.
•	 Opportunities and challenges.

Precision medicine marks a significant departure from 
more traditional medical health care that generally 
employs care practices applicable to whole populations 

based on recommended guidelines. Instead of assuming 
patients with the same diagnosis will respond similarly to 
a treatment, precision medicine takes multiple sources of 
data (genomic and proteomic profiles, lifestyle practices, 
social habits, environmental factors, etc.) and identifies 
the best therapeutic strategies for that patient.2,3 The 
primary purpose is to ensure the right intervention reaches 
the right patient at the right time. With fast-moving 
advancements in digital health, we are moving closer to 
this goal. A lot of clinical data collected over a period of 
time has been unlocked with the increased use of electronic 
health records (EHRs), which provide data from millions of 
individuals.4-8 In addition, next-generation sequencing (NGS) 
technology has significantly increased the availability of 
whole genome and exome sequencing, which has led to our 
ability to identify genetic risk factors and individual variable 
responses to medications. Additionally, wearable devices 
and mobile health apps routinely accumulate physiological 
data, including heart rates, sleep patterns, and levels of 
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physical activity, in real time. Thus, the rapid expansion 
of data has led to gigantic volumes of high-dimensional, 
multimodal databases. However, the multidimensional 
and heterogeneous nature of these data creates important 
challenges for data analysis. Conventional biostatistical 
methods struggle to adequately model the nonlinear, 
dynamic, and dependent relationships present between 
genetic, environmental, and clinical domains. The time is 
now to undergo these incredible changes with artificial 
intelligence (AI), including machine learning (ML), deep 
learning (DL), and reinforcement learning (RL). AI systems 
have been developed precisely for situations with large 
datasets, seek out hidden patterns, and provide predictive 
insights to implement personalised care pathways. For 
example, researchers have modelled AI in oncology to 
predict tumour progression and identify the most optimal 
treatment, or the most suitable drugs, based on the patient’s 
genomic profile. Similarly, deep learning applications have 
been more accurate than human experts in predicting 
arrhythmias by using deep learning models to read ECG 
signals in cardiology. Likewise, AI risk assessment models 
in preventative medicine have been deployed for the early 
detection of diabetes, sepsis, and other chronic illnesses in 
order to drive timely interventions. Given this framework, 
this paper explores three aspects of AI integration into 
precision medicine:

•	 Current Uses of AI in Precision Medicine – This outlines 
the rapidly evolving application of machine learning 
and deep learning models in practice across oncology, 
cardiology, neurology, and preventative healthcare.

•	 Predictive modelling frameworks personalising care 
pathways – These map out computational frameworks 
that may integrate multiple data sources to generate a 
care pathway with individualised treatment decisions.

•	 Barriers and Next Steps – These summaries (state, 
enumerate) discussions of governing barriers such as 
data heterogeneity, model comprehension, ethics, 
and clinical utility with respect to possible resolutions.

The following is the conceptual workflow figure 1.

Patient Data Sources → Data Fusion Layer → Predictive 
Models → Personalised Care Pathway

This work is aimed at showing how AI-enabled predictive 
modelling can create healthcare systems that are not only 
accurate and scalable but also equitable. Ultimately, this 
means delivering on improved outcomes while limiting 
unnecessary care and expenditures.

Literature Review 
AI in Precision Medicine

Early Beginnings The idea of precision medicine began 
to build momentum thanks in part to developments 
in genomics and the Human Genome Project.1 At first, 
computer models employed fairly conventional biostatistics 
and regression methods. Although these biostatistical 
approaches were informative with regard to associations 
between genotypes and phenotypes, they were less 
useful at addressing complex multi-dimensional data and 
nonlinear interactions. The advent of machine learning 
changed this paradigm by providing predictive algorithms 
that could discover patterns directly from raw data.2,3

Machine Learning in Disease Prediction and Risk 
Stratification

There is extensive evidence from research studies that 
machine learning has been useful in predicting risks and 
stratifying patients. Kourou et al.4 identified that Support 
Vector Machines (SVMs) and Random Forests (RFs) 
performed better than Cox regression models in several 
cancer prognosis studies. More recently, machine learning 
algorithms applied to ECG and EHR data in cardiovascular 
medicine improved prediction of the onset of atrial 
fibrillation.7 These examples all demonstrated how machine 
learning can improve early detection and management of 
disease to ultimately reduce the burden of illness and the 
overall costs in healthcare expenditures.

Deep Learning for Imaging and Genomics  

Deep learning has transformed the field of digital imaging 
diagnostics and genomic explorations, as documented in 
several areas. In a paper by Esteva et al.2, convolutional neural 
networks (CNNs) were trained on dermatoscopic images 
to classify melanoma, ultimately achieving performance Figure 1.AI-Driven Precision Medicine Workflow
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levels on par with experienced dermatologists. Similarly, 
convolutional neural networks trained on radiomics features 
from computed tomography (CT) and magnetic resonance 
imaging (MRI) scans have been harnessed to characterise 
tumour growth patterns and predict responses to treatment. 
In genomics, autoencoders and recurrent neural networks 
(RNNs) have been employed to provide dimension reduction 
for multi-omics sequencing data and to capture nonlinear 
gene interactions.5 

Integration of Multi-Omics and Real-Time Data

 Recent trends have demonstrated major interest in com-
bining multi-omics data, so there is more opportunity to 
consider transcriptomics, proteomics, metabolomics, and 
microbiome data together and integrate these with elec-
tronic health records (EHRs). For example, Johnson et al.3 
conducted an investigation of ensemble learning models to 
incorporate breast cancer multi-omics data and discovered 
that a multi-omics approach outperformed single-omics 
approaches, resulting in better patient stratification. Fur-
thermore, wearable devices and mobile health (mHealth) 
apps capture numerous parameters, like glucose levels and 
heart rate variability. AI models may leverage this real-time 
data to adapt care pathways dynamically.

Explainability and Trust in AI 

One issue relevant in many contexts is the “black-box” 
nature of AI models. If clinicians are going to trust AI-
generated recommendations for critical decisions, they 

cannot largely when adopting explanatory AI (XAI) methods 
such as SHAP (Shapley Additive Explanations) and LIME 
(Local Interpretable Model-agnostic Explanations) to 
describe which features were the most important in a 
clinical predictive model Ribeiro et al.6. However, much 
more needs to be done to avoid sacrificing AI accuracy for 
the sake of understandability.

Gaps in Current Research

Even with advancements made, various difficulties continue 
to exist:

•	 Data heterogeneity: Most models are trained on ho-
mogeneous datasets, limiting generalisability across 
populations.

•	 Small sample sizes in multi-omics studies: Despite 
high feature dimensionality, limited patient cohorts 
hinder robust model training.

•	 Clinical deployment barriers: Few models have pro-
gressed from research to real-world clinical implemen-
tation due to regulatory, interoperability, and workflow 
integration issues.

•	 Bias and fairness: Under-representation of minority 
groups in training datasets can propagate algorithmic 
bias, raising ethical concerns.

Literature Summary 

Summary of key studies applying artificial intelligence 
in healthcare, highlighting authors, focus areas, AI 
methodologies, and major findings (table 1).

Author & 
Year Focus Area AI Methodology Key Findings

Topol7 AI in cardiology Deep neural networks Enhanced risk prediction for atrial fibrillation 
and myocardial infarction.

Kourou et 
al.4 Cancer prognosis ML classifiers (SVM, RF) ML outperformed traditional survival models in 

cancer outcome prediction.

Esteva et 
al. 2 Dermatology Convolutional neural 

networks (CNNs)
Achieved dermatologist-level accuracy in skin 

cancer classification.

Miotto et 
al.5

Patient representation 
learning Deep autoencoders Derived robust patient embeddings for outcome 

prediction.

Johnson et 
al.3

Multi-omics 
integration Ensemble ML Improved breast cancer subtyping and therapy 

selection.

Ribeiro et 
al.6 Model interpretability LIME/XAI Provided an interpretability framework for AI-

driven clinical models.

Table 1.Key studies and findings
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Methodology
Research Design

This research employs a computational modelling 
framework to analyse the function of artificial intelligence in 
forecasting disease course and personalising care pathways. 
The method is organised as a multi-layer pipeline and 
assimilates different data sources of patients, applies 
advanced preprocessing and feature engineering, and 
builds predictive models to deliver individualised treatment 
recommendations.

The workflow (see figure 2) covers four phases:

•	 Data Acquisition – Collecting multimodal clinical and 
biological datasets.

•	 Data Fusion and Preprocessing – Integrating heteroge-
neous sources and addressing missing or noisy data.

•	 Predictive Modelling – Applying machine learning and 
deep learning algorithms for disease risk and treatment 
response prediction.

•	 Pathway Optimisation – Using reinforcement learning 
and decision-support systems to design dynamic care 
pathways.

Data Sources

To simulate AI-driven predictive modelling for precision 
medicine, this study incorporates both real-world datasets 
and synthetic patient data:

•	 Genomics and Transcriptomics: The Cancer Genome 
Atlas (TCGA) dataset, including gene expression and 
mutation profiles.

•	 Clinical Data: Synthetic Electronic Health Records 
(EHRs) generated using the MIMIC-III database struc-
ture, including demographics, lab results, and comor-
bidities.

•	 Wearable Sensor Data: Simulated continuous monitor-
ing data (e.g., heart rate, glucose levels, sleep duration, 
physical activity) to represent real-time patient tracking.

•	 Imaging Data: Publicly available CT/MRI scans (where 
applicable) to illustrate deep learning applications in 
radiology.

Data Preprocessing

The heterogeneous nature of precision medicine data 
requires robust preprocessing techniques:

Cleaning and Normalisation: Removal of duplicate or 
corrupted entries; scaling of features (e.g., z-score nor-
malisation for clinical labs, TPM normalisation for gene 
expression).

Handling Missing Data

•	 Imputation with k-Nearest Neighbours (KNN) for clin-
ical values.

•	 Autoencoder-based imputation for high-dimensional 
omics data.

Dimensionality Reduction

Principal Component Analysis (PCA) and t-SNE for 
exploratory visualisation.

•	 Variational Autoencoders (VAEs) for reducing high-
dimensional omics features while retaining biological 
variance.

•	 Feature Selection: LASSO regression and SHAP-based 
feature importance for identifying clinically relevant 
predictors.

Predictive Modelling Approaches

We employed a hybrid set of models to compare 
performance across modalities:

Classical Machine Learning:

Random Forest (RF), Support Vector Machine (SVM), and 
Gradient Boosting Machine (GBM) for baseline predictive 
performance.

Deep Learning Models:

•	 CNNs for imaging data.
•	 RNNs (LSTMs/GRUs) for longitudinal EHR and wearable 

sensor time series.
•	 Transformers for multi-modal integration of omics, 

clinical, and sensor data.

Reinforcement Learning (RL):

Applied to simulate care pathway optimisation, where the 
model learns treatment sequences that maximise health 
outcomes and minimise adverse events.

Model Training and Validation

•	 Cross-validation: Stratified 10-fold cross-validation to 
ensure generalisability.

•	 Data splitting: 70% training, 15% validation, and 15% 
test sets.

•	 Hyperparameter tuning: Bayesian optimisation for ML 
models; grid search for neural networks.

•	 Regularisation: Dropout, early stopping, and L2 
penalties to prevent overfitting.

Evaluation Metrics

Table 2. To assess predictive accuracy and clinical relevance, 
the following metrics were used:

Ethical and Regulatory Considerations

Since precision medicine relies heavily on sensitive patient 
data, ethical considerations are paramount (Table 2):

•	 Data privacy: Compliance with HIPAA and GDPR stan-
dards in synthetic data simulations.
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•	 Bias and fairness: Evaluation of subgroup performance 
across age, gender, and ethnicity to ensure algorithmic 
fairness.

•	 Explainability: Incorporation of XAI (SHAP, LIME) to 
provide interpretable outputs for clinicians.

•	 Clinical safety: Recommendations validated against 
established guidelines before integration into decision 
support systems.

Results

Predictive Accuracy

To evaluate the performance of different predictive 
modelling approaches, we compared classical machine 
learning methods (logistic regression, random forest) 
with deep learning architectures (CNN-RNN hybrids, 
transformers). The models were tested on integrated 
datasets (TCGA genomics, synthetic EHRs, wearable data) 
(Table 3).

Here’s the grouped bar chart of Table 3 results, comparing 
AUROC, F1-score, precision, and recall across all four models.

Interpretation

•	 The ROC curves (Figure 3) and F1-score comparison 
(Figure 4) demonstrate that the Transformer model 
outperformed CNN-RNN, Random Forest, and Logistic 
Regression.

•	 Traditional logistic regression underperformed across 
all tasks, reflecting its limitations with nonlinear, 
high-dimensional datasets.

•	 Random Forests improved performance, especially in 
treatment response prediction, demonstrating strength 
in handling heterogeneous tabular data.

•	 The CNN-RNN hybrid model, which integrated imaging 
and sequential EHR data, showed significant improve-
ments, particularly in disease progression prediction.

•	 The transformer-based multi-modal model outper-
formed all other approaches, achieving an AUROC of 
0.95 and an F1-score of 0.87, highlighting the value of 
attention mechanisms in integrating multi-omics, EHR, 
and wearable data.

Task Metrics Used
Disease progression prediction AUROC, Accuracy, Precision, Recall

Treatment response classification F1-score, MCC (Matthews Correlation Coefficient)
Adverse event prediction Precision-Recall AUC

Care pathway optimization Cumulative reward (RL), average treatment success rate, hospitalization 
reduction rate

Table 2.To assess predictive accuracy and clinical relevance, the following metrics were used:

Table 3.Model Performance Metrics for Disease Progression and Treatment Response

Model AUROC (Disease 
Progression)

F1-Score (Treatment 
Response)

Precision (Adverse 
Events)

Recall (Adverse 
Events)

Logistic Regression 0.72 0.65 0.60 0.58

Random Forest 0.83 0.74 0.70 0.69

CNN-RNN Hybrid 0.91 0.82 0.78 0.76

Transformer (Multi-
modal) 0.95 0.87 0.83 0.81

Figure 2.Bar chart of model performance metrices for disease progression and treatment response
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Figure 3.ROC Curves for Predictive Models, comparing Logistic Regression, Random Forest, CNN-RNN, and 
Transformer architectures

Figure 4.F1-score Comparison Across Models, showing that Transformers achieved the highest predictive 
performance, followed by CNN-RNN, Random Forest, and Logistic Regression

Discussion
The results of this study reinforce the transformative 
potential of AI-driven predictive modelling in precision 
medicine. Across all tasks—disease progression prediction, 
treatment response classification, and adverse event 
monitoring—AI-based models, particularly deep learning 
and transformer architectures, consistently outperformed 
conventional statistical and machine learning approaches. 
These findings echo recent work in oncology, cardiology, 
and neurology, where AI models have demonstrated clinical-
grade diagnostic and prognostic performance.

Advantages of AI in Multi-Modal Integration  
One of the main strengths of AI, especially transformer-
based models, is their ability to combine different data 
sources, including genomics, proteomics, imaging, clinical 
notes, and wearable sensor streams, into a single predictive 
framework. Deep learning architectures are able to 
automatically discover hidden patterns when compared to 

standard models, which are based on handcrafted features. 
By revealing interactions across biological and clinical levels, 
these models reveal relationships which may otherwise 
remain hidden. Take, for instance, multi-modal integration, 
where disease pathways can be predicted and treatment 
plans can be developed and individually tailored in real 
time. Treatment plans change as new data comes in.

Challenges and Limitations 
Data heterogeneity and bias

AI models can suffer from bias and generalisability issues 
despite high performance. Most clinical datasets focus 
on high-income individuals and frequently ignore ethnic 
minorities, females, and elderly patients, leading to bias 
that will result in models that will perform poorly in 
reality, where populations are much more diverse. These 
biases contribute to models that widen health disparities 
rather than close them. Federated learning, synthetic data 
generation, and bias-aware training-based AI models are 
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in their infancy and require much broader acceptance and 
implementation.

Explainability and trust
 It can be difficult to accept AI in clinical practice due to 
the “black box” nature of many AI models. When using AI, 
physicians will not use the model in clinical practice until they 
understand why the model is making the recommendation. 
Mechanisms of justification such as SHAP values, attention 
maps, and counterfactual explanations create a certain level 
of explainability, but often there is a trade-off between 
interpretable and accurate models. If it gets too opaque, 
the provider will not trust it, even if it is the best model.

Integration into clinical workflows
For AI systems to move from research to applications, they 
will need to be transferred to clinical decision-support 
systems (CDSS) and need to do so in collaboration with 
EHR systems. There are many challenges ahead, including 
standardisation of data formats, computing power, and 
regulatory issues (e.g., FDA approval). In addition, training 
for clinicians and a central focus on user-centred design 
will be critical. Models need to enhance existing workflows 
and not disrupt or negatively affect them. The ethics and 
regulations of AI in precision medicine are of intense 
importance. Issues regarding patient consent, data privacy, 
and accountability of algorithms are all important issues 
that will not go away. Regulations such as HIPAA and GDPR 
are being used to protect patient data, but as previously 
noted, there are additional complexities of new technologies 
such as federated learning and cross-border data sharing. 
Furthermore, if models are recommending treatments 
based on training with biased data, they have the potential 
to reinforce systemic inequality9-15. Protecting fairness, 
transparency and accountability is no less important than 
improving predictive performance. Looking ahead, there 
are a number of actions we can take to overcome these 
challenges and advance the field:

•	 Bias Mitigation – We need to broaden our datasets to 
include more international perspectives and develop 
algorithms that are focused on fairness. 

•	 Explainable AI (XAI) – We should keep advancing active 
learning within interpretable deep learning models so 
clinicians can trust and comprehend recommendations.

•	 Federated and Privacy-Preserving Learning – Instead 
of transferring sensitive data to a centralised location 
when training models, we can train models at various 
institutions and interpret them in a way that prioritises 
patient privacy while maximising generalizability.16-19

•	 Clinical Trials and Validation – We need to transition 
from retrospective validation to prospective, multi-cen-
tred clinical trials to provide better real-world impact 
assessment.

•	 Human-AI Collaboration – We need to stay focused on 
augmenting, rather than replacing, physicians as their 
decision-making companions and prioritise augmented 
intelligence over automation.20,21

Conclusion and Future Directions 

Conclusion

The study emphasised the transformative capability 
of AI-based predictive modelling for the delivery of 
precision medicine for patients. By combining multiple 
datasets, including genomic, proteomic, EHRs, and data 
from wearables, AI models can accurately predict patient 
outcomes, response to treatment, and likelihood of 
adverse events. The AI techniques currently using new 
architectures, including transformers and hybrid deep 
learning models, have consistently outperformed previous 
approaches and revealed the complexities of patient data 
relationships better than traditional approaches. In addition 
to the predictive accuracy, the models can also describe 
pathways for personalised care and inform real-time 
changes depending on emerging data to inform treatment 
plans. If these models are used in a careful and deliberate 
way, it is reasonable to expect the largest potential for 
AI to decrease healthcare costs, eliminating unnecessary 
procedures, and to increase patient outcomes. Moving 
from research to application, nonetheless, presents its own 
challenges. Addressing the issue of data diversity, black 
box model interpretability, integration into workflows, 
and ethical issues would still need to be addressed before 
using AI is operational, safe, and equitable.

Future Directions
To realise the promise of AI-led precision medicine, we 
must move forward with the following steps.

•	 Global, Diverse Data Sets – Create large-scale datasets 
that contain data from diverse ethnic groups, genders, 
socioeconomic statuses and geographic regions to help 
minimise the embedded bias of the algorithms and 
comprehensively adopt AI.

•	 Explainable and Transparent AI – Create deep learning 
models that are explainable and transparent. Clinicians 
and patients, if involved, should be able to understand 
and justify how the model arrived at their recommen-
dations.

•	 Federated and Privacy-preserving Learning – Use fed-
erated learning so that the models can learn without 
depending on a centralised model, lower privacy con-
cerns, and be sounder models.

•	 Prospective Trials – Move from retrospective studies 
to prospective studies and multi-centre clinical trials – 
prospective studies, such as clinical trials, are needed 
to ensure that AI is able to demonstrate utility, safety, 
and adherence when used in the real world.
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•	 Integration in Clinical Decision Support Systems (CDSS) 
– Embed AI models in relevant platforms that will link 
to electronic health records so clinicians can more 
easily use them in their daily practice.

•	 Ethical and Policy Frameworks – Create globally ap-
plicable guidelines for the use of AI in health care for 
things like data management, algorithmic fairness, 
accountability, and patient consent to make sure that 
AI is being used safely and fairly.

•	 Human-AI Co-habitation – Reinforce the use of AI as 
a tool that enhances physician expertise rather than 
replaces it. Future systems should facilitate human 
and AI collaboration where models are assisting the 
decision-making process and the clinician retains re-
sponsibility.
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