

## Research Article

# Using IoT in Supply Chain Management

Prakhar Jain<sup>1</sup>, Siddharth Gohil<sup>2</sup>

<sup>1,2</sup>Research Scholar, MCA Thakur Institute of Management Studies, Career Improvement & Research (TIMSCDR) Mumbai, India.

## INFO

**Corresponding Author:**

Prakhar Jain, MCA Thakur Institute of Management Studies, Career Improvement & Research (TIMSCDR) Mumbai, India.

**E-mail Id:**

prakhar.jain90@yahoo.com

**How to cite this article:**

Jain P, Gohil S. Using IoT in Supply Chain Management. *J Adv Res Embed Sys* 2020; 7(2): 1-4.

Date of Submission: 2020-04-04

Date of Acceptance: 2020-05-13

## ABSTRACT

Supply chain management has been alive and has developed over past hundred years. This report takes a detail account of improvement history of the availability chain administration. A review of the literature reveals that over the years the traditional supply chain management, which relied on manual and laborious gathering of data and tracking of products, has evolved into Smart supply chain management. Starting from simple RFID based tagging for identification of products, the event of sensor based technologies and communicating devices has occupied itself an massive role within the overall increase of the smart supply chains. It is understood that an entire lot of infrastructure layer operates by gathering, interactive the knowledge to trace the position, quality and opportune delivery of products. The use of IoT today not only tracks the products but intelligently gives minute about produce situation and helps in defending and plummeting losses.

**Keywords:** SPM, IoT, Supply Chain Management, Losses

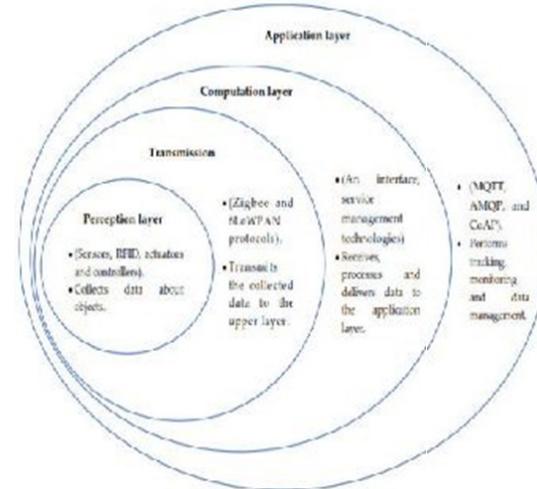
## Introduction

One understandable distinguishing of up to date social and economic improvement is that the competition, being more penetrating, and consequently the improvement of technical progress, being more rapid, reassurance creativities to procedure a series of changes within the field of logistics and procurement and more organization to adopt the judgments and approaches of Supply Chain Management (SCM), which not only can reduce the costs for enterprises, raise the speed of response to market demand, but can also progress the keenness of enterprises in market competition. There are motionless glitches with distress within the operation of supply chain organization, like the low level of intelligence in SCM, poor visual management, high degree of indecision, low automation of convinced industries, frequent manual errors by humans, serious industry losses, difficulties in tracing products after sales, unable to search the product location, etc. The research and development of Internet of Things (IoT) bring new opportunities to the innovation of modern SCM. After the arrival of computer, Internet, and mobile communications, IoT is another revolutionary expertise of information industry. From network layer to the

application layer, IoT involves in a various fields including standards, core technologies, and products, as well as the integration and collaboration among various technologies, systems, products, software, networks, and uses. With its long industrial chain and wide use, it's indeed present in all directions and all embracing. Therefore, research of Internet of Things (IoT) has been highlighted in recent years and its related research and improvement have also drawn great attention worldwide.

“Supply chain management is the management of the interconnection of organization that relate to every other complete ups and downs linkages between the method that produces value to the last word consumer within the sort of products and services. The most key of the success of any supply chain is to know and satisfy customers' needs with the very best quality of products on time, which will be obtainable by eliminating non value- added activities, improving processes and making the obtainability chain more agile. In most of the fashionable enterprises, regular supply chain processes are managed by software packages like Enterprise Resource Planning (ERP) and Advanced Planning and Scheduling (APS). Though, these systems

aren't sufficient to face the cumulative encounters of today's supply chains; such as suppleness, receptiveness and nimbleness. Hence, novel methods are introduced to satisfy these challenges. With the forthcoming global shift to Industry 4.0 and smart organizations, IoT skill is in concert an important role during this transition. IoT are often useful in refining the enactment of the entire supply chain and transforming it to be a sensible one; for instance, it is often used for monitoring, tracking products, creating an intelligent transportation, and petition anticipating. Inventory may be a one between the momentous areas where cost lessening is habitually accomplished during a supply chain. Precisely, IoT can reduce inventory costs also because the bullwhip effect across the availability chain.


The main objective of this research is to review the economic and social impact of adapting Industry 4.0 and IoT technology during a warehouse, to point out how it can help in saving money for any industrial organization and to point out how it improves its performance by proposing intimately a theoretical framework of executing IoT during a warehouse. The sub-objectives are to review the impact of Industry 4.0 on the availability chain and the way it affects SCM functions, and to review the most components of the IoT application.

## Introduction to Internet of Things

Components of IoT Infrastructure is taken into account one among the most pillars of Industry 4.0 that helps organizations build and strengthen their Competitiveness within the market and features a great impact on the fashionable economy transformation.<sup>1</sup> IoT has four basic layers i.e the perception layer, the transmission layer, the computation layer and the application layer. Each layer has inherent security issues connected with it. Figure 1 illustrates the components and function of each layer. The perception layer, also referred to as the sensors layer, features a main function to spot, track and collect data from objects by using many technologies such as RFID tags, that are used to identify and track objects, wireless sensor networks (WSNs), and actuators that are used for monitoring and tracking the status of objects, then transmitting the collected data to the transmission layer.

The transmission layer acts as a link between the objects and the cloud; it provides data routing transmission through the network. Many protocols are used in this layer such as low-power wireless personal area networks (LoWPAN), which give great connectivity with low energy consumption and self-organization, Zigbee, which is a wireless network technology that has the advantages of low cost, low energy consumption, low complexity, reliability and security, Wi-Fi, and 3G can also be used. The computation layer provides efficient and secure services to the transmission layer and therefore the application layer. An interface technology

is employed during this layer to make sure security and efficiency of the exchanged data.



**Figure 1. Architecture of IoT**

Service management is additionally use, it's liable for services like collection, exchanging and therefore the storage of knowledge.<sup>2</sup> The last one is the application layer in which data is managed. It is vital to pick the acceptable protocol for managing the network. There are many protocols that can be used such as Message Queue Telemetry Transport (MQTT), Advance Message Queuing Protocol (AMQP), Constrained Application Protocol (CoAP) and Extensible Messaging and Presence Protocol (XMPP).<sup>3</sup>

## Literature Review

Information sharing has played a crucial role in supply chain management. Baihaqia and Sohal (2013) accessible an empirical study to point out the impact of data sharing on the availability chain. They found that sharing Information between partners is important but not enough to realize a significant improvement. The core is to be master in making supply chain partners more cooperative and to strengthen the interior integration between them by achieving tasks together in order that the Relationship between them is built on trust. Managers should identify the information to be shared and the best mechanism to share it, with the target of improving the entire supply chain performance. Choy et al. (2014) industrialized a hypothetical model with seven hypotheses to review the impact of adopting Information Technology (IT) uses in supply chain, like Information and Communication Technology (ICT), logistics info system and Business Intelligence (BI).

Two dimensions of service performance were considered; service quality for market-based view and competitive advantage for resource-based view. The results showed that most of the Logistics Service Providers (LSPs) don't instrument many techniques although recommended by several researchers, e.g., Radio Frequency Identification

(RFID). The proposed hypothetical model are often considered as a roadmap for LSPs to enhance their competitiveness.

Grabara et al. (2014) illustrated the role and impact of data systems on transportation activities within the enterprise, like improving the efficiency of the transportation process, better drivers' utilization, more efficient information exchange, and better financial results. They argued that without good information systems management, organizations won't be ready to make sound decisions in transportation and hence will face risks in meeting market requirements.

Jonsson and Mattsson (2013) used a simulation model to know the worth and impact of sharing four types of planning information (point-of-sales data, stock-on-hand data, customer forecasts and planned orders) on the inventory capital by using re-order point methods. It was found that the value of the share information depends on whether the demand is stationary or not; when demand is stationary the stock-on-hand data has huge value, while when the demand isn't stationary the demand forecast and planned order data have high value. Sharing point-of sales has no value whether the demand is stationary or not, thus it's vital to make a decision how and when to share planning information. Vanpoucke et al. (2017) have developed an analytical framework to check the way to cash in of the integration between supply chain and IoT for the operational decisions. Using IT has a stronger impact on the operational performance when used for upstream integration instead of the mixing with customers. this will increase speed and accuracy and may improve delivery performance. However, according to Azab et al. (2016), many supply chains still suffer from miscommunication between dissimilar stakeholders and inefficient exchange of data and information. Hence, new approaches and techniques should be adopted to supply more efficient information sharing.

### IoT Based Food Supply Innovation

The use of IoT technology in agricultural business is increasing. In recent years, IoT and large information & cloud computing has become the pillar of sensible agriculture. The appliance of IoT technology improves the image and transparency of food offer chain, improve certainty of offer chain. Consequently, intelligent degree of offer chains is increased. Food safety has become a problem involved by the general public. because of the characteristics of fresh foods, varied chemical changes occur throughout its circulation method, and any drawback within the method could incur issue of food safety. Therefore, one in all the foremost necessary conditions for making certain quality and safety of recent foods is to construct a cold chain traceability system.

### Implementation of Cold Chain Traceability System

Cold chain is also a special food offer chain, throughout that temperature is sometimes in restraint throughout the strategy from raw materials and resources acquisition, storage, transportation, process to product sales, and consumption thus on make sure food safety Goal of food offer chain is resource and raw materials acquisition, world producing, and world sales. Therefore, the carrier of data the knowledge the data should even be globalised. There are set of internationally uniform tracing codes are imperative for food offer and demand network. If all the cold chain enterprises connection in food offer and demand network can adopt this set of codes, communication among these enterprises can become electric sander, contradictions. caused by totally dissimilar standards are attending to be reduced; consequently, tracing potency are usually improved and tracing value are usually remittent, that additionally reflects the property and openness of food offer and demand network.

### Cold Chain Traceability System

The institution of cold chain traceability system is systematical, requiring the blending of knowledge from all the enterprises in cold chain. during this sophisticated system, info relating to the producers and suppliers of raw materials, manufacturing method, logistics, and customers are all finished. For alliance enterprises in food offer chain, all product info for one firm is hold on within the firm's system. Moreover, a public cold chain information platform is created for info sharing within the alliance. Once a retardant happens in one enterprise, the supply of the matter will be caterpillar-tracked through product info. Meanwhile, alternative alliance firms may track the merchandise info to assist the problematic company.



**Figure 2.Cold chain traceability system**

### Information System of Cold Chain Traceability System

In food offer chain, a node is Associate in Nursing enterprise. Enterprises are connected to every alternative, representing

food offer chain network. Once a part of the provision chain is disconnected, it will be coupled through alternative firms, reflective the dynamic stability of food offer chain.

### Supply Chain Innovation with IoT

What flow into within the circulation line isn't solely objects, however additionally the technology, capital, information, management, and human resources, reflective the flexibility of food offer chain. Enterprises of all sizes are welcome during this network, therefore the resources will be attending to a lot of luxuriant and therefore the structure are going to be a lot of stable, that reflects the openness of food offer chain. based in Gregorian calendar month 2009, Henan Xianyi offer Chain Co. Ltd., may be a temperature management offer chain company in China. Its main business scope include: supply services, freight forwarding, transit of merchandise, general shipment, and special transport of merchandise (containers and refrigeration). In recent years, as a result of the cold chain market evolves ceaselessly, consequently, the consumers' demand for cold chain merchandise and quality demand for cold and recent merchandise additionally expand perpetually. On the alternative hand, once Xianyi reviews the implementation of China's traceable cold chain system, they verify 3 main problems: initial, info is broken and uneven. Second, standards for cold chain are not uniform, with business standards enjoying main role, and laws and constraints are depleted. Third, value of traceability is simply too high. Little and medium enterprises cannot afford the dearly-won supply costs, whereas supply resources of leading enterprise are vacant at intervals the meanwhile. Xianyi offer chain, that has committed to cold chain supply for years, with its whole chain and networked temperature management offer chain service system building at intervals the country, accurately capture the strain of assorted purchasers and offer and provide made-to-order supply chain service solutions for purchasers from industrial channels, market channels, food and food channels, e-commerce channels, and import channels. With its pointed help for patrons to optimise their offer chains, potency and additional price ar each enhanced. With the frequent releases of national policies and therefore the consumers' growing demand for top quality recent merchandise, Xianyi offer chain actualises traceable food offer chain service and temperature management image of the complete method through in-depth integration of IoT and PaaS info service platform. the corporate has engineered a scientific operation management system, established a wise storage and transport system, applied IoT technologies like RFID tag, GPS, temperature detector, and driver application to timely monitor the standing of recent merchandise in circulation, together with temperature, shipment standing and GPS positioning info, food standing, and quality info.

### Conclusion

IoT may be a key technology of the fourth age trade. IoT is taken into account one among the most promising technologies to regulate and recover the performance of offer chains; warehouses are key elements of offer chain that contribute to the success of any industrial organization, so new technologies are gaining more attention from a large vary of enterprises to enhance performance, name and thus gain a lot of customers and profit. During this paper, a review of Industry 4.0 technologies is provided (CPS, IoT and cloud computing), in addition as data sharing in offer chains, and also the previous analysis on implementing IoT in offer chains. Elements of IoT infrastructure are categorized in four layers; the perception layer, the transmission layer, the computation layer and also the application layer. Additionally, the potential impacts of exploitation IoT in dissimilar offer chain functions are illustrated. Also, a framework of applying IoT in warehousing operations was projected with illustrating however it'll bring a lot of edges to the warehouse and improve overall performance. Potential impacts on the economy and society have been illustrated. it absolutely was additionally mentioned that the projected framework will facilitate in rising the performance of the warehouse, increase potency, stop inventory shortage and counterfeiting, and create order delivering quicker and easier, and thus increase the profit.

### References

1. Janusz W. The Impact of the Internet of Things Concept Improvement on Changes in The Operations. 2017.
2. Jie L, Yu W, Zhang N et al. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Uses. 2017.
3. Nagasimha S, Jadhav D, Kulkarni N. Security Threats in the Application layer in IOT Uses. Paper presented at International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud). 2017.
4. Janusz G, Kolcun M, Kot S. The role of information systems in transport logistics. *International Journal of Education and Research*.
5. Baihaqia, Imam, Amrik SS. The impact of information sharing in supply chains on organizational performance: An empirical study. *Production Planning & Control: The Management of Operations*. 2013.
6. Jonsson, Patrik, Stig-Arne Mattsson. The value of sharing planning information in supply chains. *International Journal of Physical Distribution and Logistics Management*. 2013.
7. Vanpoucke, Evelyne, Ann Vereecke et al. 2017. Leveraging the impact of supply chain integration through information technology.