

Review Article

Algae as Bioindicators of Aquatic Pollution

Shahnawaz Ahmed

Research Scientist, Institute for Industrial Research and Toxicology, Ghaziabad, Uttar Pradesh, India.

INFO

E-mail Id:

sharu160by2@gmail.com

Orcid Id:

<https://orcid.org/0000-0002-8678-4541>

How to cite this article:

Ahmed S. Algae as Bioindicators of Aquatic Pollution. *J Adv Res Alt Energ Env Eco* 2024; 11(1): 1-17.

Date of Submission: 2024-03-01

Date of Acceptance: 2024-04-25

ABSTRACT

The assessment of water quality in aquatic ecosystems is of paramount importance in the context of environmental preservation and human health. Algae have emerged as invaluable bioindicators for monitoring aquatic pollution due to their sensitivity to environmental changes and rapid response. This article provides a comprehensive overview of the advancements and challenges associated with using algae as bioindicators of aquatic pollution. Recent developments in algal research have facilitated the identification of specific algal species that are highly responsive to various pollutants, enabling precise and efficient pollution assessment. Cutting-edge technologies, such as DNA sequencing and remote sensing, have enhanced our ability to monitor algal populations in real-time. Furthermore, the integration of algal data with sophisticated statistical models has improved the accuracy of pollution assessments, making them more reliable for regulatory and conservation purposes. Despite these advancements, challenges remain, including the standardization of bioindicator protocols, data interpretation, and the potential influence of multiple stressors on algal communities. The article discusses the need for interdisciplinary collaboration, ongoing research, and policy support to address these challenges and further enhance the role of algae as bioindicators in safeguarding our precious aquatic ecosystems.

Keywords: Algae, Bioindicators, Pollution, Advancements, Challenges, Water Quality, Environmental Preservation

Introduction

Bioindicators in aquatic ecology refer to living organisms, such as algae, aquatic plants, and various species of aquatic animals, that are used to assess the environmental health and quality of aquatic ecosystems. These organisms are sensitive to changes in their surroundings and can provide valuable information about the presence and extent of pollution in water bodies. Bioindicators serve as an early warning system for aquatic pollution. They can respond rapidly to changes in water quality and detect pollution before it reaches levels harmful to humans or other organisms.¹ Bioindicators reflect the overall health of an aquatic ecosystem. By monitoring the condition and diversity of these organisms, scientists can gauge the impact

of pollution on the environment.² They can be used for long-term monitoring of water quality. Tracking changes in the abundance and diversity of bioindicator species over time provides valuable data for understanding trends in aquatic pollution.³ Different bioindicator species respond to specific pollutants or environmental conditions. For example, certain types of algae are sensitive to nutrient pollution, while others are more tolerant. This specificity can help identify the sources and types of pollution in aquatic systems.⁴ Bioindicator-based assessments are often more cost-effective than chemical analyses of water quality, making them accessible for researchers and environmental monitoring agencies.⁵

The diversity and abundance of algae in an aquatic

ecosystem can provide valuable information about its health. Changes in the composition and density of algal populations can be indicative of pollution levels. For instance, an overabundance of certain algae, like harmful algal blooms, can be linked to nutrient pollution.⁶ Algae are particularly useful in the context of nutrient pollution, which is a common issue in many water bodies. Excessive nutrients, such as nitrogen and phosphorus, can lead to eutrophication and the growth of harmful algae. By studying the types of algae present and their growth patterns, researchers can assess the extent of nutrient pollution.⁷ Some algae species have the ability to accumulate heavy metals. By analyzing the presence and concentration of heavy metals in algae, scientists can determine the extent of heavy metal contamination in aquatic ecosystems.⁸ Algae form the base of the aquatic food web. Studying the bioaccumulation and biomagnification of pollutants in algae can help in understanding how contaminants move up the food chain, affecting higher trophic levels, including fish and ultimately, humans.⁹ Government agencies and environmental organizations often use algal bioindicators to set water quality standards and develop management strategies for polluted water bodies.¹⁰

Algae: The Ideal Bioindicator

Algae are a diverse group of photosynthetic microorganisms that play a crucial role in aquatic ecosystems. They are found in various freshwater and marine environments and serve as valuable bioindicators of water quality and aquatic pollution. The ubiquity and diversity of algae make them excellent indicators of environmental health, and their presence and abundance can provide valuable insights into the state of aquatic ecosystems. In this context, we will explore the ubiquity and diversity of algae in aquatic ecosystems with references to support their role as bioindicators of aquatic pollution.

- **Ubiquity of Algae:** Algae can be found in nearly every aquatic environment on Earth, from pristine, unpolluted waters to heavily contaminated or eutrophic systems. Their ability to thrive in diverse conditions is a testament to their ubiquity. Algae are present in both natural and man-made freshwater bodies. They are often the primary producers in these ecosystems and are sensitive to changes in water quality. Algae colonize the substrates in flowing waters, contributing to the food web and oxygen production. Changes in water chemistry and nutrient levels can affect their composition. Algae, particularly microalgae and phytoplankton, are abundant in estuarine and coastal regions. They serve as important indicators of nutrient pollution and eutrophication.¹¹ They are a crucial component of coral reef ecosystems, providing habitat and food for various marine species. Changes in algal

composition can signal environmental stress. Algae are utilized in wastewater treatment plants to remove pollutants, illustrating their ability to adapt and thrive in nutrient-rich environments.¹²

- **Diversity of Algae:** Algae exhibit an incredible diversity in terms of species, morphology, and ecological roles. This diversity allows for the monitoring of specific types of algae to gauge the impact of pollution. Different groups of algae, including diatoms, green algae, red algae, and cyanobacteria, have varying sensitivities to environmental changes. Diatoms are unicellular algae with unique silica shells. They are particularly sensitive to changes in water quality and are widely used in water quality assessments due to their rapid response to pollution.¹³ Green algae are diverse and found in various aquatic habitats. They are often used as indicators of nutrient enrichment in freshwater systems.¹² Red algae are common in marine environments and can be sensitive to changes in temperature and light conditions. They are valuable indicators of stress in coastal ecosystems. Cyanobacteria, or blue-green algae, are known for their ability to thrive in nutrient-rich conditions. Their overgrowth can indicate eutrophication and potential toxin production.¹⁴
- **Rapid Response:** Algae are known for their rapid response to environmental changes, making them valuable bioindicators of aquatic pollution. These photosynthetic organisms, ranging from microalgae to macro algae, play a crucial role in monitoring the health of aquatic ecosystems. Their ability to respond quickly to changes in water quality and pollution levels has led to their extensive use in environmental assessment and research. Here are some key points regarding algae as bioindicators
- **Sensitivity to Pollution:** Algae are highly sensitive to changes in water quality and are known to respond rapidly to various pollutants, including nutrients (such as nitrogen and phosphorus), heavy metals, pesticides, and organic matter. This sensitivity allows them to indicate the presence of pollutants in aquatic environments quickly.⁷
- **Algal Blooms:** Algae can form visible blooms when exposed to excess nutrients, primarily nitrogen and phosphorus. These blooms are often associated with eutrophication, a common consequence of pollution, and serve as a clear visual indicator of water quality degradation.⁶
- **Biomass and Community Structure:** Changes in algal biomass and community structure can provide valuable information about shifts in water quality and pollutant levels. Different algae species have varying tolerances to pollution, and their presence or absence can reflect the health of an aquatic ecosystem.¹¹

- Biochemical Responses:** Algae exhibit biochemical responses to pollution stress, such as changes in pigment content, antioxidant enzyme activity, and lipid peroxidation. These responses can be quantified and used as indicators of environmental stress and pollution levels.¹⁵
- Temporal and Spatial Monitoring:** Algae are valuable for both temporal and spatial monitoring of aquatic pollution. Their rapid growth and short generation times allow for frequent assessments, and they can be used in various aquatic environments, including lakes, rivers, and coastal areas.¹⁶ Algae play a crucial role in indicating aquatic pollution and are often used as bioindicators for assessing the health of aquatic ecosystems. Two key aspects of this role are their contributions to primary production and nutrient cycling.
- Role in Primary Production:** Algae are primary producers in aquatic ecosystems, which means they are responsible for converting energy from the sun into organic matter through photosynthesis. They form the base of the aquatic food chain and provide energy and nutrients to higher trophic levels, such as zooplankton, fish, and other aquatic organisms. Their role in primary production is significant for several reasons. The abundance and diversity of algae in a water body are often directly related to water quality. Clean, healthy water bodies tend to support a diverse community of algae, while polluted or eutrophic waters may favor the growth of certain algal species, such as cyanobacteria (blue-green algae), which can be harmful. A shift in algal community composition can be a strong indicator of water pollution.¹¹ Algae are essential for the production of oxygen through photosynthesis. They contribute to maintaining oxygen levels in the water, which is vital for the survival of aquatic organisms.¹⁷ Algae serve as a primary food source for many aquatic organisms. Their growth and abundance influence the entire aquatic food web, affecting the availability of food for higher trophic levels.¹⁸ Algae also play a role in carbon sequestration, helping to mitigate climate change by capturing and storing carbon dioxide from the atmosphere in the form of organic matter.¹⁹
- Role in Nutrient Cycling:** Algae are intimately involved in nutrient cycling within aquatic ecosystems. They assimilate and release various nutrients, including nitrogen and phosphorus, which are essential for their growth. Algal nutrient cycling is crucial for maintaining the ecological balance of aquatic systems. Algae take up nutrients from the water, including nitrogen and phosphorus, as they grow. This process helps to reduce excess nutrient levels, which can be a major problem in eutrophic or polluted waters.⁷ When algae die or are consumed by other organisms, the nutrients stored in their cells are released back into the water. This recycling of nutrients ensures that essential elements are available for other aquatic organisms, such as phytoplankton and aquatic plants.²⁰ Excessive nutrient inputs can lead to algal blooms, which, while indicating poor water quality, also contribute to nutrient recycling. However, when these blooms decay, they may lead to oxygen depletion and water quality problems.¹⁷

clining of nutrients ensures that essential elements are available for other aquatic organisms, such as phytoplankton and aquatic plants.²⁰ Excessive nutrient inputs can lead to algal blooms, which, while indicating poor water quality, also contribute to nutrient recycling. However, when these blooms decay, they may lead to oxygen depletion and water quality problems.¹⁷

Types of Algae Commonly Used as Bioindicators

Macroalgae (Seaweeds)

Macroalgae, commonly known as seaweeds, play a crucial role as bioindicators of aquatic pollution. They are highly sensitive to changes in water quality and can reflect various aspects of environmental conditions, making them valuable tools for monitoring the health of aquatic ecosystems. This sensitivity is attributed to their physiological characteristics and life history traits. Macroalgae are sensitive to excess nutrient inputs, particularly nitrogen and phosphorus. Excessive nutrients can lead to algal blooms and eutrophication, which negatively affect water quality. Seaweeds can accumulate excess nutrients, and their growth and composition can be indicative of nutrient pollution.²¹ Seaweeds have the ability to accumulate heavy metals, which makes them useful for monitoring metal pollution. Their metal concentrations can provide insights into the level of metal contamination in aquatic ecosystems.²² Macroalgae can also accumulate organic pollutants, including hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). The presence and concentration of these pollutants in seaweeds can indicate contamination levels.²³ Seaweeds are sensitive to changes in pH and ocean acidification. Their growth and health are closely linked to pH levels, and alterations in seaweed populations can be indicative of pH changes caused by pollution or ocean acidification.²⁴ Researchers and environmental agencies use macroalgae as part of biomonitoring programs to assess the ecological status of aquatic environments. They can be valuable indicators of overall water quality and ecosystem health. For example, the European Water Framework Directive uses macroalgae in its ecological assessment of water bodies.

Microalgae (phytoplankton)

Microalgae, also known as phytoplankton, are microscopic photosynthetic organisms that play a crucial role in aquatic ecosystems. They are valuable bioindicators of aquatic pollution because of their rapid response to environmental changes and sensitivity to various pollutants. This response makes them excellent indicators of water quality and overall ecosystem health. Let's delve into the role of microalgae as bioindicators of aquatic pollution. One of the most common forms of aquatic pollution is nutrient pollution, particularly excess nutrients like nitrogen and phosphorus. Microalgae

are highly sensitive to these nutrients and respond quickly to their presence. Elevated nutrient levels often lead to excessive phytoplankton growth, resulting in harmful algal blooms (HABs). Studies such as Paerl and Otten (2013) emphasize how microalgae can be used to monitor and assess nutrient pollution in aquatic ecosystems.⁶ Changes in microalgal community composition and abundance can serve as indicators of water quality. The presence of certain species or the dominance of one group over another can signal specific environmental conditions or pollution levels. Several studies, including Reynolds et al. (2002) discuss how the assessment of microalgal species composition can provide information about water quality and pollution.²⁵ Microalgae are also used to assess the toxicity of water bodies. Some microalgae, such as certain species of dinoflagellates, produce toxins during HABs. These toxins can harm aquatic life and pose health risks to humans. Monitoring microalgal species that produce toxins can provide insights into the potential risks associated with pollution. A study by Hallegraeff (1993) discusses the toxicity of dinoflagellates and their use as bioindicators.²⁶ Microalgae play a crucial role in the production of oxygen through photosynthesis. Elevated pollution levels can affect their ability to photosynthesize and produce oxygen, leading to oxygen depletion, especially in cases of organic pollution. Oxygen depletion is a sign of water pollution and can lead to the death of aquatic organisms.²⁷ Changes in the distribution and abundance of microalgae can also be indicative of larger environmental shifts, such as climate change. Researchers have used microalgal data to study the impact of climate change on aquatic ecosystems. The Intergovernmental Panel on Climate Change (IPCC) reports often incorporate data on phytoplankton to assess the effects of climate change on the world's oceans.

Periphytic Algae

These algae are an essential component of the benthic community in aquatic ecosystems, attaching themselves to submerged surfaces such as rocks, sediment, and plants in freshwater and marine environments. As bioindicators, periphytic algae are sensitive to changes in water quality and can provide valuable insights into the health of aquatic ecosystems. These algae are highly sensitive to various forms of aquatic pollution, including nutrient enrichment (eutrophication), heavy metals, pesticides, and organic pollutants. Their growth and composition can be significantly altered in response to changes in water quality, making them reliable indicators of pollution levels.²⁸ Periphytic algae are particularly useful in detecting nutrient pollution, such as elevated levels of nitrogen and phosphorus. Increased nutrient levels can lead to the proliferation of certain algae species and the formation of harmful algal blooms, which can negatively impact aquatic

ecosystems.²⁹ Monitoring periphytic algae can provide insights into the overall biological diversity of an aquatic ecosystem. Changes in the composition and diversity of periphytic algae can reflect alterations in habitat quality and the presence of pollutants.³⁰ The structure of periphytic algal communities can indicate the health of an ecosystem. Shifts in species composition and dominance can signal changes in water quality, making periphytic algae a valuable tool in pollution assessment.³¹ The algae can also be used to assess sediment pollution. They can accumulate and store contaminants, providing a record of historical pollution levels in an area.³² Establishing reference sites with healthy periphytic algal communities allows for the comparison of polluted areas against baseline conditions. This comparative approach is essential for determining the extent of pollution and potential remediation efforts.³³

Algal Responses to Pollution

Physiological Responses

They exhibit various physiological responses when exposed to pollutants in water bodies, making them useful tools for monitoring water quality. Here are some key physiological responses of algae to aquatic pollution such as Algae growth can be inhibited by the presence of pollutants such as heavy metals, organic compounds, and nutrient excess. High concentrations of heavy metals like copper, zinc, and lead can disrupt metabolic processes, affecting photosynthesis and respiration.³⁴ Pollution can cause alterations in the chlorophyll content and composition of algae. Increased concentrations of pollutants can lead to reduced chlorophyll levels and changes in chlorophyll a/b ratios. This can affect the efficiency of photosynthesis and indicate environmental stress.³⁵ Algae play a crucial role in oxygen production through photosynthesis. Pollutants, especially organic matter, can lead to increased oxygen demand due to the decomposition of pollutants. This can result in oxygen depletion, impacting the survival of aquatic organisms.³⁶ Algae respond to excess nutrients like nitrogen and phosphorus by overgrowth, leading to eutrophication. This can result in harmful algal blooms (HABs), which produce toxins harmful to aquatic life and water quality.³⁷ Algal cells can change in size, shape, and structure in response to pollution. For example, exposure to heavy metals can cause the deformation of algal cells, making them smaller or irregular in shape.³⁸ The cells may produce specific enzymes in response to pollution, such as antioxidant enzymes to counteract oxidative stress caused by pollutants.³⁹ These physiological responses of algae to aquatic pollution make them excellent indicators of water quality and ecosystem health. By monitoring these responses, researchers and environmentalists can assess the level of pollution in aquatic environments and take appropriate measures to mitigate its effects.

Changes In Photosynthesis and Respiration Rates

Algae play a critical role in aquatic ecosystems, as they are primary producers and are responsible for converting carbon dioxide into organic matter through photosynthesis. Any alterations in their photosynthesis and respiration rates can provide valuable insights into the health of aquatic environments. There is effect of Pollution on Photosynthesis, Pollutants in water bodies, such as heavy metals, nutrients, and organic chemicals, can influence algae photosynthesis. For example, excess nutrients, such as nitrogen and phosphorus, can lead to eutrophication. In eutrophic waters, algal blooms occur, which can alter the photosynthesis rates. Algae in such environments often have higher photosynthetic rates due to the abundance of nutrients, but this can lead to oxygen depletion and negatively impact other aquatic life.⁴⁰ Pollution can also affect the respiration rates of algae. When pollution introduces toxic substances, algae may increase their respiration rates as a response to stress. This can result in a higher demand for oxygen, potentially depleting oxygen levels in the water, which is harmful to other aquatic organisms.⁴¹ Researchers and environmental agencies often use algae as bioindicators due to their sensitivity to pollution-induced changes. They assess the composition and abundance of algae communities and measure various parameters, including photosynthetic pigments and respiration rates, to gauge the health of aquatic ecosystems. Changes in these rates can be correlated with the presence and extent of pollution.⁴² Various techniques are employed to measure photosynthesis and respiration rates in algae, such as oxygen production and consumption measurements, cometery to assess the photosynthetic efficiency of algae. These techniques can be useful in tracking changes in response to pollution.⁴³

Algal Growth Patterns

The growth patterns of algae in aquatic ecosystems can provide valuable insights into the water quality and the presence of pollutants. Algae encompass a diverse group of photosynthetic organisms, and different species respond differently to environmental conditions. The presence and dominance of certain algae species can indicate the state of the ecosystem. For example, the dominance of diatoms, such as species from the genera *Achnanthes* and *Navicula*, is often associated with cleaner water due to their sensitivity to pollution.¹ Algal biomass and abundance can increase in response to nutrient pollution, particularly excess phosphorus and nitrogen. This excessive nutrient loading can lead to eutrophication, where algae bloom and oxygen levels decrease, harming other aquatic life. The relationship between nutrient levels and algal biomass is well-documented in various studies on eutrophication

.⁴⁴ In polluted waters, algal diversity often decreases, with only a few pollution-tolerant species dominating the ecosystem. This reduction in diversity can serve as an indicator of poor water quality.⁴⁵ Algae are sensitive to various pollutants, including heavy metals, pesticides, and organic contaminants. The presence of certain species, like green algae (*Chlorella* sp.) or cyanobacteria (*Microcystis* sp.), can indicate contamination by specific toxins.^{46,47}

Their growth patterns can vary seasonally. For example, some algae thrive in warmer temperatures, while others are more abundant in colder seasons. Understanding these seasonal patterns can help in distinguishing natural fluctuations from pollution-related changes.¹¹ Changes in the biovolume of algae, along with alterations in their morphology (e.g., cell size and shape), can indicate exposure to pollutants.³⁰ Certain algae, like cyanobacteria, can produce toxins that pose risks to human and aquatic health. The occurrence of toxic algal blooms is a significant concern in polluted waters and can be used as an indicator of water pollution.⁴⁸ Some algae are efficient decomposers of organic matter, and their presence in high abundance can indicate organic pollution. For instance, members of the genera *Cladophora* and *Spirogyra* are often found in organically polluted waters.⁴⁹ Besides Algal growth patterns can be a valuable tool in assessing water quality and identifying the presence of pollutants in aquatic ecosystems. These patterns, along with species composition and diversity, provide essential information for environmental monitoring and management.

Accumulation of Pollutants Within Algal Cells

Accumulation of pollutants in algae can be studied in various ways, including the analysis of both organic and inorganic contaminants. The mechanism of accumulation depends on the properties of the pollutant, the physiology of the algal species, and the environmental conditions. Algae can accumulate heavy metals such as cadmium, lead, and mercury. This accumulation occurs through several mechanisms, including adsorption, complexation, and active uptake. Algal cell walls and organelles contain binding sites for these metals. Various studies have examined the accumulation of heavy metals in algae, such as the work of Hawari et al. (1991) on cadmium accumulation by *Chlorella vulgaris*.⁵⁰ They can also accumulate organic pollutants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The accumulation of these compounds is often attributed to the lipophilic nature of these pollutants and the lipids in algal cells. Research by Sansón et al. (2002) investigated the accumulation of PAHs in the green alga *Scenedesmus obliquus*.⁵¹ Excessive nutrient levels, particularly nitrogen and phosphorus, can lead to eutrophication in aquatic systems. Algae readily accumulate these nutrients and can bloom when they are

present in abundance. Research by Conley et al. (2009) discussed the role of algae in nutrient cycling and their response to nutrient pollution.⁵² They can also accumulate toxic substances such as pesticides and herbicides. The accumulation of these compounds may impact the algal growth and ecosystem health. Research by Cuypers et al. (2011) investigated the effects of the herbicide diuron on different algal species.⁵³

Morphological Responses

Morphological responses of Algae, such as changes in size, shape, color, and structure, can provide valuable information about the health of aquatic ecosystems. Below, we will discuss some key morphological responses of algae to aquatic pollution are changes in cell size and shape. For example, exposure to heavy metals like copper or cadmium can cause cells to shrink or become irregular in shape.⁵⁴ Pollution can affect the pigmentation of algae. Nutrient pollution, in particular, can lead to excessive algal growth, resulting in "algal blooms" that can change the color of the water from green to brown or red.⁵⁵ In response to pollution, some algae can produce mucilage or exudates. These slimy substances can be protective mechanisms against contaminants.⁵⁶ Contamination can alter the structure of algal colonies. For instance, exposure to pesticides or herbicides can disrupt the formation of filamentous algae, leading to fragmentation.⁵⁷ Certain types of algae may respond to pollution by producing more resistant stages, such as spores or cysts. These structures can help algae survive adverse conditions.⁵⁸

Algal Species Composition Shifts

Algal species composition shifts can provide valuable information about the health and pollution status of aquatic ecosystems. They are highly responsive to changes in their environment, making them useful bioindicators for assessing water quality. Algal species composition shifts, such as changes in the abundance and diversity of algal species, can indicate various types of pollution, including nutrient enrichment (eutrophication), heavy metal contamination, and other environmental stressors. Eutrophication occurs when excessive nutrients, such as nitrogen and phosphorus, are introduced into aquatic systems, often from agricultural runoff, sewage, or industrial discharges. This nutrient enrichment leads to the proliferation of certain algal species, often referred to as "nuisance algae," which can form harmful algal blooms (HABs). These blooms can deplete oxygen in the water and release toxins harmful to aquatic life and humans. Shifts in algal species composition towards dominance by cyanobacteria and other harmful species are indicative of eutrophication.³⁷ Heavy metals, such as mercury, lead, and cadmium, can accumulate in aquatic ecosystems and affect algal communities. Some algal species are more tolerant

to heavy metal pollution than others. Therefore, shifts in algal species composition can indicate the presence and severity of heavy metal contamination in water bodies.⁵⁹ In urban and industrial areas, the discharge of pollutants, such as chemicals and heavy metals, can lead to shifts in algal species composition. Species that can tolerate these pollutants may become dominant in polluted waters. Such changes can indicate the impact of urban and industrial pollution on aquatic ecosystems.⁶⁰ Acidification of water bodies due to acid rain or other sources of acidity can also lead to changes in algal species composition. Acid-sensitive species may decline, while acid-tolerant species may become more abundant.⁶¹

Biovolume and Cell Size Alterations

Biovolume and cell size alterations in algae populations can provide valuable insights into the environmental health of aquatic ecosystems. Biovolume refers to the three-dimensional space occupied by algae cells in a unit volume of water. It is a crucial parameter in the assessment of algae populations as bioindicators of pollution.⁶² Changes in biovolume can indicate alterations in the abundance and diversity of algae in response to environmental stressors. In polluted waters, biovolume may change due to the proliferation of certain algal species that are more tolerant to the pollution or the decline of sensitive species. Such alterations can be quantified through microscopic analysis and image processing techniques.¹¹ Algae exhibit a wide range of cell sizes, from microalgae with small cells to macroalgae with large, multicellular structures. Changes in the cell size of algae can also serve as an important bioindicator of pollution. Pollution can lead to shifts in the dominance of algae species, favoring smaller cells that are better adapted to the changed environmental conditions.⁶³ Additionally, pollutants may influence cell size by affecting nutrient availability and other ecological factors. Changes in biovolume and cell size can be used to assess the impact of pollutants on aquatic ecosystems.⁶⁴ The presence of certain algal species with specific biovolumes and cell sizes can indicate the level and type of pollution. For example, in eutrophic waters, there may be an increase in the biovolume of small, fast-growing phytoplankton species.⁶⁵

Changes In Algal Pigmentation

Changes in algal pigmentation can serve as valuable indicators of pollution levels in aquatic ecosystems. Algal pigments, such as chlorophyll, carotenoids, and phycobilins, play a crucial role in photosynthesis and can be influenced by various pollutants. Chlorophyll a is the primary photosynthetic pigment in most algae. It is crucial for photosynthesis and can be affected by water pollution. Elevated levels of nutrients, such as nitrogen and phosphorus, from agricultural runoff or sewage discharge, can stimulate algal growth and lead to increased chlorophyll

a concentration. This can result in the proliferation of algae species, known as algal blooms, which may alter the aquatic composition of ecosystem.⁶ Carotenoids are another group of pigments in algae that play a vital role in photosynthesis and protect cells from oxidative stress. Changes in carotenoid content can indicate stress in algae caused by various pollutants, including heavy metals, organic compounds, and UV radiation. In response to pollution, algae may produce more carotenoids as a defense mechanism.⁶⁶ Phycobilins are pigments found in cyanobacteria and some red algae. These pigments are sensitive to light and can change their concentration and structure in response to environmental conditions. Pollutants that alter light penetration in water, such as suspended solids and colored dissolved organic matter, can affect the availability of light to algae and impact the production of phycobilins.⁶⁷ Aquatic pollution can lead to shifts in the composition of algal communities. Some species may be more tolerant of specific pollutants and dominate in polluted environments, leading to changes in overall algal pigmentation. These shifts can be indicative of water quality degradation.⁶⁸

Community-Level Responses

Community-level responses of algae can provide insights into the overall health and pollution levels in aquatic ecosystems. Algal communities are diverse, with different species displaying varying levels of sensitivity to specific pollutants. When exposed to pollution, some species may decline, while others may thrive. This can lead to changes in the overall composition and diversity of the algal community. A decrease in species diversity and a shift towards more pollution-tolerant species can indicate deteriorating water quality.⁶⁹ Pollution can lead to alterations in the biovolume and biomass of algal communities. Increased nutrient loading, such as nitrogen and phosphorus, can stimulate the growth of certain algae, resulting in higher biovolume and biomass. This can lead to the formation of harmful algal blooms, which are often associated with eutrophication and can have detrimental effects on aquatic ecosystems.⁶ Several metrics are used to assess the response of algal communities to pollution, including the Shannon-Wiener diversity index, the Simpson index, and the saprobic index. These metrics provide quantitative measures of community structure and can be used to track changes in response to pollution.²⁵ The trophic state index (TSI) is a widely used indicator that assesses the nutrient status and eutrophication of water bodies based on the types and abundance of algae present. High TSI values indicate eutrophic conditions and potentially high pollution levels, while low TSI values suggest oligotrophic conditions with better water quality.⁷⁰ Different algae species exhibit varying levels of sensitivity to specific pollutants, such as heavy metals, pesticides, and organic compounds. Monitoring

changes in the dominance of specific species or genera can help identify the presence and impact of particular pollutants.⁷¹ Algal communities can exhibit seasonal changes in response to pollution. For example, in temperate regions, certain pollution-tolerant species may dominate during warm, nutrient-rich seasons, while pollution-sensitive species may prevail during colder months. This seasonal variability can provide valuable information about pollution dynamics.⁷²

Common Pollutants and Their Effects on Algae

Nutrient Pollution (Eutrophication)

Nutrient pollution is primarily caused by the excessive input of nutrients, such as nitrogen and phosphorus, into aquatic ecosystems, typically through activities like agricultural runoff, wastewater discharge, and industrial processes. This excessive nutrient input can have several detrimental effects on water bodies, and algae play a crucial role in monitoring and assessing these impacts. Algal Blooms often consist of fast-growing, single-celled or filamentous algae that can dominate the aquatic environment. The overabundance of these algae can block sunlight, making it difficult for other aquatic organisms to survive and disrupting the balance of the ecosystem.⁷³ As algae thrive and die in large quantities, their decomposition consumes oxygen in the water, leading to hypoxia (low oxygen levels) and anoxia (absence of oxygen). This oxygen depletion can result in "dead zones" where fish and other aquatic organisms cannot survive.⁷⁴ Some algal species can produce toxins, and under the right conditions, nutrient pollution can promote the growth of these toxic species. These toxic algal blooms can harm aquatic life and pose risks to human health through the consumption of contaminated water or seafood.⁵⁵ Eutrophication and the dominance of certain algal species can alter the composition of aquatic communities. It can favor species that thrive in high-nutrient environments, potentially leading to a decrease in biodiversity.⁷³ Algal blooms can make water bodies unsightly, affect water quality, and reduce the recreational value of lakes and rivers, impacting tourism and local economies.⁷⁵ Algae can be sampled and analyzed for various parameters, including nutrient content, pigments, and cell counts, to assess the health of the ecosystem and the extent of eutrophication.¹

Heavy Metals

Heavy metals, such as lead (Pb), mercury (Hg), cadmium (Cd), and copper (Cu), are a significant source of environmental pollution in aquatic ecosystems. Algae, as primary producers in aquatic food chains, play a crucial role in reflecting the health of aquatic environments. Their response to heavy metal pollution can be a reliable indicator of water quality. Heavy metals can inhibit the growth of algae, leading to reduced biomass and changes in species composition.

This effect is due to the interference of heavy metals with photosynthesis and nutrient uptake processes in algae. The inhibition of algal growth is a direct indicator of the presence of heavy metals in water.⁷⁶ Algae have a high capacity to accumulate heavy metals from the surrounding water. This bioaccumulation can lead to increased metal concentrations in the algal cells, which, in turn, affects the entire aquatic food web as these algae are consumed by higher trophic levels.⁷⁷ Heavy metals disrupt photosynthesis in algae by interfering with chlorophyll production and electron transport chain processes. This disruption can be measured by changes in chlorophyll content and fluorescence parameters, serving as an indicator of heavy metal stress.⁷⁸ Heavy metals can lead to shifts in the composition of algal communities in polluted waters. Some species are more tolerant to heavy metals, while others are sensitive. The dominance of metal-tolerant species can be a valuable bioindicator of heavy metal pollution.⁷⁹ Algae can express specific biomarkers in response to heavy metal stress. These biomarkers include the upregulation of metallothionein genes and the production of reactive oxygen species. Monitoring these markers can provide early indications of heavy metal pollution.⁸⁰ Algae can be used in standardized toxicity tests, such as the Algal Toxicity Test, to determine the sensitivity of different algal species to specific heavy metals. These tests help assess the potential risks of heavy metal contamination in aquatic ecosystems.⁸¹

Organic Pollutants

Organic pollutants, such as pesticides and herbicides, can alter the composition and diversity of algal communities in aquatic ecosystems. These chemicals can selectively affect certain algal species, leading to shifts in community structure.⁸² Many organic pollutants can inhibit the growth of algae. Substances like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) can have toxic effects on algal cells, causing reduced photosynthetic activity and growth.⁸³ Organic pollutants can cause cell damage and oxidative stress in algal cells. This can lead to cell death and the release of toxins, further affecting the aquatic ecosystem.⁸⁴ Organic pollutants, including certain organic compounds like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), can bioaccumulate in algae and pass up the food chain. Algae at the base of the food web can accumulate these pollutants, and when consumed by higher trophic levels, the pollutants can biomagnify, potentially affecting larger organisms such as fish.⁸⁵ Algae's sensitivity to organic pollutants makes them valuable bioindicators for monitoring water quality. A reduction in algal biomass or changes in species composition can serve as an early warning of pollution in aquatic environments.⁸⁶

pH Variations

pH and temperature variations are two crucial factors that can significantly impact the growth, composition, and health of algal communities in aquatic ecosystems. Algae communities are sensitive to changes in pH levels. Acidic conditions (low pH) can result from pollution sources such as acid rain or the discharge of industrial effluents. Many algae species are highly sensitive to acidic conditions, and their growth can be inhibited or even completely suppressed in such environments. This can lead to a decline in overall algal biomass and a shift in the composition of algal communities. For example, acid-tolerant diatom species may dominate in acidic waters.⁶⁸ Conversely, highly alkaline conditions (high pH), often caused by substances like caustic soda, can also harm algae. Some species may be more tolerant of alkaline conditions, but extreme pH levels can disrupt nutrient availability and the overall ecosystem balance. These changes in algal populations can be used as indicators of water quality deterioration.⁸⁷

Temperature Variations

Temperature variations can significantly affect the growth and distribution of algae in aquatic ecosystems. Cold temperatures can slow down algal metabolic processes and reduce their overall growth rates. In polluted waters, the presence of contaminants can exacerbate the negative effects of cold temperatures on algae. This can lead to decreased photosynthetic activity and a shift in the community structure, favoring cold-tolerant species.⁸⁸ Conversely, warm temperatures can accelerate algal growth, and in nutrient-rich polluted waters, this can lead to excessive algal blooms. These blooms can deplete oxygen and create dead zones, harming other aquatic organisms. The presence of specific algal species or excessive growth can serve as indicators of nutrient pollution and tempera

Monitoring and Sampling Techniques

Collection and Preservation of Algal Samples

Collection and preservation of algal samples are critical steps in using algae as bioindicators of aquatic pollution. Algae are excellent indicators of water quality because they are sensitive to environmental changes and respond to various pollutants. Proper collection and preservation methods are essential to ensure the accuracy and reliability of the data obtained. Choose sampling sites that represent different pollution levels and environmental conditions. Locations near potential pollution sources and control sites with minimal pollution are often selected [89]. Use appropriate equipment such as a plankton net, sediment samplers, or glass or plastic containers to collect algal samples. Avoid using metal containers to prevent contamination [90].

Collect samples at various depths to capture the vertical distribution of algae in the water column, as different species can inhabit different strata.⁹¹ Collect samples at regular intervals to account for temporal variations in algal communities.⁹² Use appropriate fixatives to preserve the algal samples. Common fixatives include Lugol's iodine solution, formalin, or 4% glutaraldehyde. Fixatives halt metabolic activity and maintain cell structure.⁹³ Store fixed samples in cool, dark conditions to prevent further algal growth and degradation. Refrigeration or freezing can be used for long-term storage.⁹⁴ Properly label samples with detailed information on the collection date, site, depth, and any relevant environmental parameters like temperature and pH.⁹⁵ Handle and transport samples carefully to avoid physical damage and contamination. Use appropriate containers and ice packs for transport if necessary.⁹⁶ Proper collection and preservation of algal samples are essential to maintain the integrity of the samples and ensure accurate assessment of aquatic pollution using algae as bioindicators.

Laboratory Analysis Methods

- **Algal Cell Counting and Enumeration:** A known volume of water is filtered through a fine mesh, and the algae retained on the filter are counted under a microscope. This method provides information about the abundance of different algal species.⁹⁷ **Chlorophyll-a Analysis:** Chlorophyll-a is a pigment found in algae, and its concentration in water is indicative of algal biomass. It is typically extracted from water samples and quantified using spectrophotometry or fluorometry.⁹⁸
- **Biological Integrity Assessment:** Various indices, such as the Algal Quality Index (AQI) and the Trophic Diatom Index (TDI), assess the health of aquatic ecosystems by analyzing the composition and abundance of algae in relation to water quality parameters.⁹⁹
- **Biotic Index (e.g., Shannon-Wiener Diversity Index):** This index quantifies the diversity of algal species in a water body. A higher diversity is often indicative of a healthier ecosystem.¹⁰⁰
- **Microscopy and Taxonomic Identification:** Microscopic examination of algal samples is essential for species identification, especially in cases where specific indicator species are sought.⁹²
- **Pigment Analysis for Species Identification:** High-performance liquid chromatography (HPLC) and other pigment analysis techniques are used to identify specific algal species based on their pigment profiles.¹⁰¹
- **Molecular Techniques (e.g., DNA Barcoding):** DNA barcoding is used to identify algal species through genetic markers. Polymerase chain reaction (PCR) and DNA sequencing are common techniques in this context.¹⁰²
- **Standard protocols for assessing algal bioindicators in aquatic ecosystems**

Assessing algae as bioindicators of aquatic pollution is an important aspect of environmental monitoring and water quality assessment. Algae, such as diatoms, green algae, and blue-green algae, can be used to gauge the health of aquatic ecosystems because they respond sensitively to changes in water quality, particularly in terms of nutrient levels and contamination. Various standard protocols and methods have been developed for assessing algal bioindicators in aquatic ecosystems. Below are some of the key protocols.

- **The USEPA Algal Assay Test:** The United States Environmental Protection Agency (USEPA) has developed an algal assay test to assess the toxicity of contaminants in water. This test measures the growth and photosynthetic activity of algae in response to different water samples. It is detailed in the document titled "Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms".¹⁰³
- **The Canadian Council of Ministers of the Environment (CCME) Protocol:** Canada's CCME has established a protocol for sampling and analyzing benthic algae as bioindicators. This protocol provides guidance on sample collection, preparation, and data analysis to assess water quality. It is outlined in the document "Protocol for the Sampling and Analysis of Benthic Algae".¹⁰⁴
- **The European Union Water Framework Directive (WFD):** The WFD includes provisions for using algae as biological indicators to assess the ecological status of water bodies in Europe. The directive provides guidance on sample collection and data interpretation. The relevant document is "Common Implementation Strategy for the Water Framework Directive - Guidance Document No. 5: Ecological Status Assessment of Algal Quality - Final".¹⁰⁵
- **The Standard Methods for the Examination of Water and Wastewater:** This publication is widely used for water quality analysis and includes methods for assessing algae and other biological indicators in aquatic ecosystems. The methods for algal analysis can be found in the section on Biological Examination (Section 10200B) of the manual.⁹⁷

Case Studies

Algae are commonly used as bioindicators of aquatic pollution due to their sensitivity to environmental changes and their rapid response to contaminants in aquatic ecosystems. They are particularly useful in monitoring urban runoff and wastewater discharge.

Case Study I: Monitoring Wastewater Discharge

In this case study, researchers used algae as bioindicators to monitor the impact of wastewater discharge into a river in Germany. They collected algae samples at different locations

upstream and downstream of the wastewater discharge point. By analyzing the composition and diversity of algae species, they were able to assess the water quality and detect changes in nutrient levels, pH, and other parameters. This study demonstrated how algae communities can indicate the presence of pollution and help in assessing the effectiveness of wastewater treatment plants.¹⁰⁶

Case Study 2: Eutrophication Assessment in Lake Taihu, China

Lake Taihu is one of China's largest freshwater lakes and has experienced significant eutrophication due to agricultural runoff and industrial discharges. Researchers in this case study¹⁰⁷ used algae as bioindicators to assess the extent of eutrophication. By examining the composition and abundance of algal species, they were able to monitor the lake's water quality and identify the sources of pollution. The study provided valuable information for the management and restoration of Lake Taihu.

Case Study 3: Pollution Assessment of the Yamuna River, India

The Yamuna River in India has long been plagued by pollution from various sources, including industrial discharges and untreated sewage. In a study conducted by Saha and Subramanian (2018), algae were used to assess water quality and the impact of pollution. They found that the composition of algal communities changed significantly in response to different levels of pollution. This research highlighted the severity of the pollution problem and the need for improved wastewater treatment.¹⁰⁸

- **Chesapeake Bay, USA:** Chesapeake Bay is the largest estuary in the United States and has experienced significant pollution from agricultural runoff and urban development. Researchers in this region have extensively used algae as bioindicators to assess water quality. The composition of algae communities in the bay has shifted due to increased nutrient inputs, and these changes have been linked to the deterioration of water quality and the decline of seagrass beds.¹⁰⁹
- **Santos Estuary, Brazil:** Santos Estuary has been impacted by industrial discharges and urban pollution. Researchers have used algae as bioindicators to monitor water quality changes. Algae communities in the estuary have shown shifts in species composition, which are linked to industrial pollution and nutrient enrichment. These indicators have informed management and policy decisions for the estuary's conservation.¹¹⁰
- **Baltic Sea, Europe:** The Baltic Sea is a semi-enclosed sea affected by various pollution sources, including agriculture and industrial activities. Algae have been employed as bioindicators to assess water quality in the Baltic Sea. The composition of algal communities

has shifted in response to nutrient loading and climate change, providing insights into the overall health of the ecosystem.¹¹¹

These case studies illustrate the importance of using algae as bioindicators to evaluate the impact of industrial and agricultural activities on coastal areas. Algae's responsiveness to changes in water quality and their role in aquatic ecosystems make them invaluable tools for monitoring and managing the environmental health of these sensitive regions. Researchers and policymakers continue to rely on algae as bioindicators to make informed decisions about pollution control and habitat conservation.

Advancements and Challenges

Emerging technologies and methods: Advancements in technology and methods have improved our ability to use algae as bioindicators, but challenges still exist.

Advancements

Advances in molecular biology have enabled the identification and classification of algae at a finer taxonomic level. DNA barcoding and molecular markers such as rRNA sequencing have enhanced our ability to differentiate between different algal species and understand their responses to pollution.¹¹² Remote sensing technologies, including satellite imagery and drones, have been employed to monitor water quality by detecting algal blooms from above. This provides valuable data for tracking the spatial and temporal distribution of algae in water bodies.¹¹³ Fluorescence sensors can detect photosynthetic activity in algae and can be deployed in situ for real-time monitoring. They offer a non-invasive and continuous way to assess water quality based on algal activity.¹¹⁴ Next-generation sequencing techniques have revolutionized the study of algal communities in water bodies. Metabarcoding and metagenomic analyses allow for comprehensive assessments of the diversity and composition of algal communities, aiding in pollution assessment.¹¹⁵

Challenges

Algal taxonomy can be intricate, with many species closely related and challenging to differentiate. This complexity can hinder accurate species-level identification and affect the precision of pollution assessment.¹¹⁶ Algae respond differently to pollutants depending on environmental factors. This variability can make it challenging to establish a universal set of indicators for pollution, as what is considered a sign of pollution in one ecosystem might not be in another.¹¹² Integrating data from various sources, including remote sensing, molecular analyses, and field observations, can be complex. Data harmonization and analysis methods that can incorporate information from these diverse sources are needed to provide a comprehensive understanding of pollution.¹¹⁷ The continuous emergence of new pollutants,

such as pharmaceuticals and microplastics, presents challenges in assessing their impact on algae. Traditional methods may not adequately detect or assess the effects of these pollutants.¹¹⁸

The Role of Molecular Techniques in Algal Bioindication

Algae are often used as bioindicators of aquatic pollution due to their sensitivity to environmental changes and their ability to respond rapidly to pollution events. They play a crucial role in assessing water quality, and advancements in molecular techniques have significantly improved the accuracy and efficiency of algae-based Bioindication. However, there are also several challenges associated with using algae as bioindicators. Let's discuss both the advancements and challenges in this context:

Advancements in Molecular Techniques

DNA barcoding and Meta barcoding techniques have revolutionized the identification of algal species. By analyzing specific regions of algal DNA, such as the 18S rRNA gene, researchers can accurately identify species even when they are present in low abundances. This allows for a more precise assessment of algal diversity in response to pollution.¹¹⁹ NGS technologies enable the high-throughput sequencing of algal communities in environmental samples. This approach provides a comprehensive view of the entire algal community, allowing for a better understanding of community structure and dynamics in response to pollution.¹²⁰ eDNA analysis has emerged as a powerful tool to monitor aquatic ecosystems. It involves the extraction and analysis of DNA from environmental samples, including water, sediment, and biofilms. This non-invasive approach can help detect the presence of specific algae and assess changes in their distribution over time.¹²¹ Advanced bioinformatic tools and software have been developed to process and analyze large datasets generated by molecular techniques. These tools enable the interpretation of complex genetic information and aid in the identification of pollution-sensitive indicator species.¹²² Advances in functional genomics allow researchers to understand how algae respond at the molecular level to pollution stress. This knowledge helps in identifying specific biomarkers and pathways that are indicative of pollution.¹²³

Challenges and Limitations

Taxonomic issues refer to difficulties in accurately identifying and classifying algae species, which can impact the reliability of algae-based assessments of water quality. Here, we will discuss these challenges and limitations.

Taxonomic Complexity: Algae encompass a vast and diverse group of organisms, with various morphological forms and life stages. Accurate identification to the species level can be challenging due to the need for specialized expertise

.¹²⁴ Some algae species may exhibit cryptic morphological variations, leading to confusion in identification. Molecular techniques like DNA barcoding can help distinguish cryptic species but may not always be practical for routine monitoring.¹²⁵ Taxonomy is not static, and the classification of algae species can change over time due to ongoing research. This can lead to discrepancies in historical data and complicate long-term monitoring efforts.¹²⁶ Some algae are microscopically small and fragile, making them difficult to handle and identify accurately. Smaller species may be overlooked or damaged during sample collection, leading to underrepresentation.¹²⁷ Hybridization events between different algae species can result in intermediates with characteristics that do not neatly fit into existing taxonomic categories.¹²⁸

Seasonal Variability: Using algae as bioindicators of aquatic pollution is a widely practiced and effective method for assessing water quality. Algae respond to various environmental factors, making them valuable tools for monitoring changes in water quality over time. One of the primary challenges in using algae as bioindicators is the seasonal variability of algal communities. Algal composition can change significantly throughout the year due to factors like temperature, light availability, nutrient levels, and water flow. These seasonal shifts can make it difficult to establish consistent baseline data for water quality assessment.¹²⁹ Accurate identification of algae at the species level is essential for assessing water quality. However, identifying algae to species can be a time-consuming and technically demanding task, particularly when dealing with diverse algal assemblages. Seasonal variations may lead to the presence of rare or less-studied species, further complicating the identification process.¹³⁰ Seasonal weather conditions, such as heavy rainfall or drought, can affect water quality parameters and subsequently alter algal communities. These short-term fluctuations in environmental conditions may lead to temporary deviations in algae-based bioindicators, potentially providing inaccurate information.¹³¹

Algal responses to pollution can be influenced by a range of stressors, including temperature, light, and nutrient availability, which can vary seasonally. These interactions between stressors may lead to complex and non-linear responses, making it challenging to attribute observed changes solely to pollution.¹³² Establishing appropriate baseline data for algal communities and defining reference conditions is crucial for comparing the impact of pollution. Seasonal variability makes it essential to collect data over extended periods to account for natural fluctuations and to differentiate them from pollution-induced changes.¹⁶

Confounding Environmental Factors: As Algal populations in aquatic ecosystems can naturally fluctuate due to seasonal changes, nutrient availability, light, temperature, and other

abiotic factors. These natural variations can sometimes be mistaken for pollution-related impacts, leading to false alarms or underestimation of pollution effects.^{11, 25} Aquatic ecosystems are often exposed to multiple stressors simultaneously, including pollution, climate change, habitat alteration, and invasive species. It can be challenging to isolate the specific impact of pollution on algal communities when these stressors interact and overlap.¹³³ Establishing a reliable baseline of algal community structure in a given ecosystem is crucial. Without a proper baseline, it is challenging to determine whether observed changes are due to pollution or part of natural variability. Historical data is often lacking, making it difficult to assess long-term trends.⁶⁴ They encompass a wide range of species with varying ecological roles and sensitivities. Some species may be highly sensitive to pollution, while others are more tolerant. Focusing solely on taxonomic diversity may not provide a complete picture of ecological health and function.¹³⁴ Algae can adapt or acclimatize to changing environmental conditions, including pollution, which can reduce their sensitivity over time. This can confound the use of algae as early warning indicators of pollution.¹³⁵ The collection and identification of algal samples can be subject to variability and errors, affecting the reliability of bioindicator data. Differences in sampling methods, laboratory techniques, and taxonomic expertise can introduce bias and inconsistencies.¹³⁶ In cases where pollution originates from diffuse or non-point sources, it can be challenging to link specific pollution events to changes in algal communities. This makes it difficult to identify and address pollution sources.¹³⁷

Conclusion

Algae serve as crucial bioindicators in assessing aquatic pollution due to their sensitivity to environmental changes. Their abundance, diversity, and health reflect water quality. Pollution-induced alterations in nutrient levels, temperature, and toxin concentrations affect algal populations, helping scientists detect and monitor contamination. Specific algae species can indicate different types of pollution, such as nutrient enrichment or heavy metal contamination. Their rapid response to environmental stressors makes algae valuable for early warning systems, aiding in the protection and restoration of aquatic ecosystems. In summary, algae's responsiveness and diversity make them essential bioindicators, offering valuable insights into the health of water bodies and the surrounding environment. Their rapid response to pollutants like heavy metals, nutrients, and organic matter makes them ideal for monitoring water quality. Algae populations can indicate the presence and severity of pollution, allowing for early detection and mitigation. Their ability to integrate long-term exposure data provides a holistic view of ecosystem health. Additionally, their cost-effectiveness and ease of sampling make them accessible for widespread application in environmental monitoring.

Algae-based assessments offer an efficient, reliable, and widely applicable tool for safeguarding aquatic ecosystems and human health by identifying and addressing pollution issues promptly. Continued research and collaboration in using algae as bioindicators of aquatic pollution is essential for several reasons. First, the environment is constantly evolving, and new pollutants emerge, making it crucial to adapt and expand our understanding of how algae respond to these changes. Second, collaborative efforts among scientists, environmental agencies, and policymakers can lead to more effective and standardized monitoring techniques, ensuring reliable data for decision-making. Third, as climate change intensifies, the interactions between algae and pollution may become more complex, necessitating ongoing research to anticipate and mitigate potential ecological disruptions. In sum, ongoing research and collaboration are vital to safeguarding aquatic ecosystems and human health. Sensitivity of algae to environmental changes, particularly in water quality, makes them valuable early warning systems for pollution. Monitoring algae populations can reveal the health of aquatic ecosystems and enable proactive intervention when pollution threats arise. Additionally, the use of algae-based bioremediation techniques can help mitigate pollution by harnessing their natural capacity to absorb and break down contaminants. Algae are thus essential in shaping a sustainable future for aquatic ecosystems, guiding conservation efforts, and providing innovative solutions for pollution control and management.

Compliance with Ethical Standards

- **Acknowledgments:** I would like to extend my heartfelt gratitude to Dr. Gayathri Venkatesan and Ms. Nahid Abda for their invaluable support and encouragement throughout the research process.
- **Disclosure of conflict of interest:** The author of this article declares that he has no conflicts of interest that could potentially influence the results or interpretations presented herein.

References

1. R. J. P. Y. V. G. C. E. & M. P. Stevenson, "Algal ecology in freshwater benthic ecosystems," *Science & Business Media*. Springer, 2005.
2. G. & O.-B. M. Bonanno, "Aquatic macrophytes and algae as indicators of water quality and their use in the development of a multimetric index for the classification of surface waters," *Ecological Indicators*, vol. 94, pp. 225-235, 2018.
3. D. C. L. A. C. B. M. B. A. C. A. C. & N. T. Hering, "Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive.," *Water Research*, vol. 89, pp. 148-161, 2015.

4. P. M. Chapman, "Integrating toxicology and ecology: putting the "eco" into ecotoxicology," *Marine Pollution Bulletin*, vol. 44(1), pp. 7-15, 2002.
5. L. L. F. Z. L. M. L. W. J. & X. S. Cao, "Algal bioindicators as tools to monitor nutrient pollution in aquatic ecosystems: A review," *Environmental Pollution*, vol. 287, p. 117579, 2021.
6. H. W. & O. T. G. Paerl, "Harmful cyanobacterial blooms: causes, consequences, and management," *Aquatic Ecology*, vol. 47(4), pp. 435-443, 2013.
7. V. H. Smith, "Eutrophication of freshwater and coastal marine ecosystems: a global problem," *Environmental Science and Pollution Research*, vol. 10(2), pp. 126-139, 2003.
8. B. Sures, "Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective," *Parasitology*, vol. 135(12), pp. 555-567, 2008.
9. C. & M. A. Sanz-Lazaro, "Bioindicators of heavy metals and organochlorine compounds in the Ebro River, Spain," *Environmental Monitoring and Assessment*, vol. 190(10), p. 567, 2018.
10. U.S. Environmental Protection Agency, "Ambient Water Quality Criteria for Algae," EPA, pp. 440/5-86-001, 1986.
11. C. S. Reynolds, "The Ecology of Phytoplankton," Cambridge University Press, pp. 21-29, 2006.
12. B. A. & P. M. Whitton, "The Ecology of Cyanobacteria: Their Diversity in Time and Space," Springer, 2012.
13. J. P. & S. E. F. Smol, "The Diatoms: Applications for the Environmental and Earth Sciences," Cambridge University Press., 2010.
14. F. e. a. Leliaert, "Phylogeny and Molecular Evolution of the Green Algae," *Critical Reviews in Plant Sciences*, vol. 33(1), pp. 1-46, 2014.
15. M. P. e. a. Gomes, "Oxidative stress responses of *Anabaena flos-aquae* and its toxic strain to diuron," *Ecotoxicology and Environmental Safety*, vol. 102, pp. 67-73, 2014.
16. D. e. a. Hering, "The development of a system to assess the ecological quality of streams based on macroinvertebrates—design of the sampling programme within the AQEM project," *International Review of Hydrobiology*, vol. 95(6), pp. 319-348, 2010.
17. H. W. & H. J. Paerl, "Blooms like it hot," *Science*, vol. 320(5872), pp. 57-58, 2009.
18. D. O. Hessen, "Algal nutrient cycling and eco-system services," *Algal Ecology*, Springer, pp. 119-139, 2008.
19. P. G. e. a. Falkowski, "The global carbon cycle: A test of our knowledge of earth as a system," *Science*, vol. 304(5663), pp. 69-75, 2004.
20. S. W. Nixon, "Coastal marine eutrophication: A definition, social causes, and future concerns," *Ophelia*, Vols. 41(1), pp. 199-219, 1995.
21. P. S. M. A. J. & B. C. Lavery, "Seaweeds of the Prevailing Rocky Reefs of Western Australia," *Water Science and Technology*, vol. 48(4), pp. 217-225, 2003.
22. P. A. R. M. A. N. M. N. G. & O. S. Viaroli, "Heavy Metals in Sediments and Biota from the Adriatic Sea," *Water, Air, and Soil Pollution*, Vols. 128(3-4), pp. 333-348, 2001.
23. M. D. & B. G. Guiry, "Seaweed Resources in Europe: Uses and Potential," New York: John Wiley & Sons, 1991.
24. S. C. A. & G. J. P. Martin, "Seaweed Responses to Ocean Acidification," *Oceanography and Marine Biology: An Annual Review*, CRC Press, vol. 56, pp. 127-182, 2018.
25. C. S. H. V. K. C. N.-F. L. & M. S. Reynolds, "Towards a functional classification of the freshwater phytoplankton," *Journal of Plankton Research*, vol. 24(5), pp. 417-428, 2002.
26. G. M. Hallegraeff, "A review of harmful algal blooms and their apparent global increase," *Phycologia*, vol. 32(2), pp. 79-99, 1993.
27. E. & T. J. T. Granéli, "Ecology of Harmful Algae," Springer Science & Business Media., 2006.
28. H. e. a. Hillebrand, "Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring," *Journal of Applied Ecology*, vol. 55(1), pp. 169-184, 2018.
29. W. K. e. a. Dodds, "Eutrophication of U.S. freshwaters: analysis of potential economic damages," *Environmental Science & Technology*, vol. 47(1), pp. 2177-2184, 2013.
30. S. I. Passy, "Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters," *Aquatic Botany*, vol. 86(3), pp. 171-178, 2007.
31. R. L. e. a. Lowe, "Periphyton response to eutrophication and its control by herbivores in continental waters: a review," *Journal of Phycology*, vol. 52(3), pp. 225-235, 2016.
32. J. M. e. a. Burkholder, "Impacts of waste from concentrated animal feeding operations on water quality," *Environmental Health Perspectives*, vol. 115(2), pp. 308-312, 2006.
33. C. V. e. a. Baxter, "Multiple-scale analyses of river networks, ecosystems, and management," *BioScience*, vol. 55(5), pp. 147-183, 2005.
34. B. R. G. A. & V. L. V. Suresh, "Aquatic and terrestrial plants: A new source of cancer chemopreventive agents," *Critical Reviews in Biotechnology*, vol. 30(2), pp. 127-146, 2010.
35. S. & D. R. S. Mishra, "Heavy metal-induced oxidative stress in plants: Impact on growth, metabolism, and toxicity," *Annu. Rev. Plant Biol.*, vol. 56, pp. 225-254, 2005.
36. X. X. Z. Y. K. W. J. J. L. G. X. Z. D. Y. & Z. W. H. Yi, "Biochemical responses and accumulation of the green alga *Chlorella pyrenoidosa* exposed to thallium(I) or

thallium(III) in culture medium.,” Environmental Science and Pollution Research, vol. 23(1), pp. 425-436, 2016.

37. H. W. & H. J. Paerl, “Climate: Blooms like it hot,” Science, vol. 320(5872), pp. 57-58, 2009.

38. Y. W. B. & G. H. Wu, “Toxic effects of copper, cadmium, and zinc on the growth, cell morphology, and ultrastructural integrity of *Pseudokirchneriella subcapitata*,” Environmental Science and Pollution Research, vol. 22(14), pp. 10646-10656, 2015.

39. R. K. P. K. A. K. S. & K. N. Kumar, “Impact of heavy metals on physiological and biochemical responses of some green microalgae,” Plant and Microbe Adaptations to Cold in a Changing World, pp. 201-219, 2019.

40. V. S. D. Smith, “Eutrophication Science: Where Do We Go from Here?,” Trends in Ecology & Evolution, vol. 24(4), pp. 201-207, 2009.

41. V. U. A. T. B. Mishra, “Excess copper induced oxidative stress and response of antioxidants in freshwater green alga *Spirogyra hyalina* (Nordstedt) Kützing,” Chemosphere, vol. 83(3), pp. 1437-1443, 2011.

42. A. B. G. D. N. P. Sfriso, “Use of benthic diatom to assess eutrophication in different coastal transitional environments,” Chemistry and Ecology, vol. 22(5), pp. 387-402, 2006.

43. D. M. C. G. R. Suggett, “Estimation of in situ phytoplankton productivity: A comparison of methods,” Limnology and Oceanography: Methods, vol. 8(4), pp. 337-365, 2010.

44. H. W. & P. V. J. Paerl, “Climate change: Links to global expansion of harmful cyanobacteria,” Water Research, vol. 46(5), pp. 1349-1363, 2014.

45. A. M. & B. B. J. Suren, “The influence of periphyton on water quality in streams,” Freshwater Biology, vol. 48(2), pp. 255-273, 2003.

46. P. & C. A. F. Miretzky, “Phosphates removal from water by iron-containing algae.,” Water Research, vol. 44(9), pp. 2913-2922, 2010.

47. B. e. a. Qin, “Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China),” Journal of Hazardous Materials, vol. 321, pp. 553-562, 2016.

48. J. e. a. Huisman, “Cyanobacterial blooms.,” Nature Reviews Microbiology, vol. 16(8), pp. 471-483, 2018.

49. W. K. & W. M. R. Dodds, “Freshwater Ecology: Concepts and Environmental Applications.,” Academic Press, 2010.

50. J. H. A. S. T. & B. S. Hawari, “Accumulation of cadmium by *Chlorella vulgaris*: Influence of pH, temperature, and contact time,” Biotechnology and Bioengineering, vol. 38(6), pp. 571-577, 1991.

51. M. E. T. R. M. & T. M. Sansón, “Polycyclic aromatic hydrocarbons in a freshwater alga: Part II. Uptake, metabolism and toxicity.,” Environmental Pollution, vol. 118(2), pp. 207-213, 2002.

52. D. J. P. H. W. H. R. W. B. D. F. S. S. P. H. K. E. & L. G. E. Conley, “Controlling eutrophication: Nitrogen and phosphorus.,” Science, vol. 323(5917), pp. 1014-1015, 2009.

53. A. H. S. J. M. K. E. G. H. & V. J. Cuypers, “Whole-plant responses, key processes, and adaptation to diuron-induced stress in *Arabidopsis thaliana* using 1H NMR fingerprinting.,” Plant Physiology, vol. 155(3), pp. 1406-1421, 2011.

54. C. D. & C. L. H. Hsiao, “The influence of copper on growth and size of marine diatom, *Skeletonema costatum*.,” Chemosphere, vol. 32(2), pp. 279-291, 1996.

55. H. W. & H. J. Paerl, “Blooms like it hot,” Science, vol. 320(5872), pp. 57-58, 2008.

56. M. & P. S. Oliveira, “Ecological control of microcystin by macrophytes in hyper-eutrophic ponds,” Journal of Applied Phycology, vol. 22(4), pp. 533-542, 2010.

57. P. C. & W. A. P. Pollard, “The responses of a selection of marine and estuarine microalgae to copper and tributyltin.,” Aquatic Toxicology, Vols. 24(3-4), pp. 179-196, 1992.

58. L. G. G. & B. A. M. Fabbro, “Sexual reproduction and cyst formation in the green alga *Scenedesmus armatus* (Scenedesmaceae Chlorophyceae).,” Phycologia, vol. 50(2), pp. 125-135, 2011.

59. E. B. A. B. R. H. N. B. F. J. M. A. J. & G. K. D. Navarro, “Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi,” Ecotoxicology, vol. 17(5), pp. 372-386, 2008.

60. B. A. & R. E. Whitton, “Use of algae for monitoring rivers.,” Verhandlungen des Internationalen Verein Limnologie, vol. 23, pp. 1094-1097, 1988.

61. W. L. B. D. & B. K. G. Keller, “Algal responses to experimental acidification of Little Round Lake, Ontario.,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 54(6), pp. 1303-1314, 1997.

62. H. J. & S. C. L. Carrick, “Have we overlooked the importance of small phytoplankton in productive waters?,” Limnology and Oceanography, vol. 47(6), pp. 1565-1572, 2002.

63. E. & K. J. Rejmánková, “Ecological conditions promoting microcystin production in *Microcystis aeruginosa* and *Pseudoanabaena* sp. in alkaline, turbid lakes.,” Hydrobiologia, Vols. 502(1-3), pp. 145-152, 2003.

64. R. J. P. Y. & G. S. W. Stevenson, “Algal indicators of environmental quality in the Missouri Ozarks,” Ecological Indicators, vol. 8(5), pp. 624-636, 2008.

65. J. & E. P. Soininen, “Types of variation in diatom community structure with land use: a case study in boreal headwater streams,” Hydrobiologia, Vols. 513(1-3), pp. 1-15, 2004.

66. A. & S. M. Fanesi, "Effects of organic and inorganic pollutants on carotenoid composition of aquatic ecosystems," *Water Research*, vol. 84, pp. 202-210, 2015.

67. D. P. & H. E. W. Hader, "Aquatic ecosystems: Effects of solar ultraviolet radiation and interactions with other climatic change factors," *Photochemical & Photobiological Sciences*, vol. 2(1), pp. 39-50, 2003.

68. R. J. & P. Y. Stevenson, "Assessing environmental conditions in rivers and streams with diatoms," *Environmental Monitoring and Assessment*, vol. 55(1), pp. 49-74, 1999.

69. R. J. B. M. L. & L. R. L. Stevenson, "Algal Ecology: Freshwater Benthic Ecosystems," Academic Press, 2019.

70. R. E. Carlson, "A trophic state index for lakes," *Limnology and Oceanography*, vol. 22(2), pp. 361-369, 1977.

71. K. & L.-B. H. Krammer, "Bacillariophyceae. 1. Teil: Naviculaceae. Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag," 1986.

72. K. Starmach, "Chrysophyceae und Haptophyceae," Schweizerbart'sche Verlagsbuchhandlung, vol. 1, 1985.

73. D. W. H. R. E. F. D. L. S. M. P. P. B. R. P. M. J. ... & K. S. E. Schindler, "Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment," *Proceedings of the National Academy of Sciences*, vol. 105(32), pp. 11254-11258, 2008.

74. R. J. & R. R. Diaz, "Spreading dead zones and consequences for marine ecosystems," *Science*, vol. 321(5891), pp. 926-929, 2008.

75. W. K. B. W. W. E. J. L. P. T. J. P. K. L. R. A. J. ... & T. D. J. Dodds, "Eutrophication of US freshwaters: Analysis of potential economic damages," *Environmental Science & Technology*, vol. 43(1), pp. 12-19, 2009.

76. W. M. B. & C. W. Wang, "Effect of heavy metal ions on algal growth and photosynthesis in *Chromera velia*," *Ecotoxicology*, vol. 24(3), pp. 604-613, 2015.

77. S. A. & A. A. Hasan, "Bioaccumulation and physiological effects of heavy metals in marine algae," *Environmental Science and Pollution Research*, vol. 25(21), pp. 20770-20784, 2018.

78. M. K. & K. A. Shukla, "Impacts of heavy metals on photosynthesis: A review," *Journal of Plant Physiology*, vol. 234, pp. 93-101, 2019.

79. X. & Z. M. Zhang, "Responses of algal communities to heavy metal pollution in a river in China," *Environmental Monitoring and Assessment*, vol. 191(10), p. 628, 2019.

80. S. & D. R. S. Mishra, "Inhibition of ribonuclease and protease activities in germinating rice seeds exposed to cadmium," *Journal of Plant Physiology*, vol. 163(1), pp. 111-116, 2006.

81. U. EPA, "Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms," U.S. Environmental Protection Agency, 2002.

82. R. S. & C. C. M. King, "Effects of nutrient and herbicide stress on algal communities in Midwestern agricultural streams," *Journal of the North American Benthological Society*, vol. 23(2), pp. 287-308, 2004.

83. H. & H. D. W. Lemieux, "Effects of polychlorinated biphenyls (PCBs) on the growth and photosynthetic efficiency of the green alga *Pseudokirchneriella subcapitata*," *Environmental Pollution*, vol. 157(7), pp. 2107-2113, 2009.

84. I. H. F. S. & L. K. M. Ahmad, "Toxicity of polycyclic aromatic hydrocarbons (PAHs) on *Scenedesmus obliquus*: A biochemical and molecular approach," *Ecotoxicology and Environmental Safety*, vol. 124, pp. 69-77, 2016.

85. R. C. A. M. M.-N. J. B. S. H. M. & I. M. G. Hale, "Polybrominated diphenyl ethers in the North American environment," *Environment International*, vol. 29(6), pp. 771-779, 2003.

86. H. R. M. & B. B. Guasch, "Algae as bioindicators in the Ebro River basin (NE Spain): Benthic diatom communities (periphyton) in relation to chemical and physiographical factors," *Ecological Indicators*, vol. 61, pp. 964-978, 2016.

87. J. W. & M. B. Eaton, "The estimation of numbers and pigment content of epipelagic algal populations," *Limnology and Oceanography*, vol. 11(4), pp. 584-595, 1966.

88. P. V. M. J. T. K. E. K. & F. B. Sundareshwar, "Phosphorus limitation of coastal ecosystem processes: patterns and potential causes," *Ecosystems*, vol. 6(6), pp. 492-504, 2003.

89. R. J. Stevenson, "Algal Ecology: Freshwater Benthic Ecosystems," Academic Press, 2013.

90. B. A. & P. M. Whitton, "Introduction to the Algae," Cambridge University Press, 2000.

91. F. E. C. R. M. & M. D. G. Round, "The Diatoms: Biology & Morphology of the Genera," Cambridge University Press, 1990.

92. J. D. & S. R. G. Wehr, "Freshwater Algae of North America: Ecology and Classification," Academic Press, 2003.

93. H. D. C. D. K. D. P. U. & Z. T. Hillebrand, "Biovolume calculation for pelagic and benthic microalgae," *Journal of Phycology*, vol. 35(2), pp. 403-424, 1999.

94. B. A. & R. E. (Whitton, "Use of Algae for Monitoring Rivers III," Institut für Botanik, Universität Innsbruck, 2012.

95. M. G. & W. B. A. Kelly, "The Trophic Diatom Index: A New Index for Monitoring Eutrophication in Rivers," *Journal of Applied Phycology*, vol. 7(4), pp. 433-444, 1995.

96. R. G. Wetzel, "Limnology: Lake and River Ecosystems," Academic Press., 2001.

97. A. W. W. A. (. W. E. F. (. American Public Health Association (APHA), "Standard Methods for the Examination of Water and Wastewater. APHA.," 2017.

98. T. R. M. Y. & L. C. M. Parsons, "A manual of chemical and biological methods for seawater analysis," Pergamon Press, 1984.

99. R. J. P. Y. C. C. P. & D. T. E. Stevenson, "Assessing environmental conditions in rivers and streams with diatoms," *Environmental Monitoring and Assessment*, vol. 17(3), pp. 277- 306, 1991.

100. C. E. & W. W. Shannon, "The mathematical theory of communication.," University of Illinois Press, 1949.

101. S. W. M. R. F. C. & W. S. W. Jeffrey, "Phytoplankton pigments in oceanography: guidelines to modern methods.," UNESCO, 1997.

102. W. J. & E. D. L. Kress, "A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region," *PLoS One*, vol. 2(6), p. e508, 2007.

103. USEPA., "Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms.," U.S. Environmental Protection Agency, 2002.

104. CCME, "Protocol for the Sampling and Analysis of Benthic Algae.," Canadian Council of Ministers of the Environment, vol. https://www.ccme.ca/files/Resources/water/BENTHALGAE_EN.pdf, 2013.

105. European Commission, "Common Implementation Strategy for the Water Framework Directive," Guidance Document No. 5: Ecological Status Assessment of Algal Quality - Final, 2009.

106. B. A. R. E. & F. G. Whitton, "Use of Algae for Monitoring Rivers," *Algae as Ecological Indicators*. Academic Press, pp. 287-306, 2006.

107. G. L. L. Z. D. & L. X. Yu, "Use of algal bioassays and diatom indices for water quality evaluation in the eutrophic Lake Taihu.," *Hydrobiologia*, vol. 592(1), pp. 107-119, 2007.

108. P. D. & S. V. Saha, "Use of algae in assessment of water quality of Yamuna River at Delhi.," *International Journal of Applied and Pure Science and Agriculture*, vol. 4(3), pp. 7-12, 2018.

109. S. S. L. G. E. P. M. L. e. a. Kaushal, "Sustainability of Water Resources in a Human-Dominated World," *Nature*, vol. 467(7311), pp. 555-561, 2010.

110. L. M. O. M. D. A. P. E. G. e. a. Rangel, "Algae as Bioindicators in Assessing the Environmental Quality of the Santos Estuary, Brazil.," *Environmental Monitoring and Assessment*, vol. 190(5), p. 299, 2018.

111. I. W. N. & W. N. Olenina, "Assessing the Quality of Baltic Sea Water with Algae.," *Ecological Indicators*, vol. 10(5), pp. 1019-1024, 2010.

112. D. H. J. & Š. P. Ryšánek, "Molecular methods for the assessment of algal communities in biological monitoring of water bodies.," *Environmental Pollution*, vol. 252, pp. 940-956, 2019.

113. T. Kutser, "Remote sensing of aquatic environments: New technology for monitoring and management of water quality.," *Remote Sensing*, vol. 10(11), p. 1852, 2018.

114. A. K. T. M. J. & S. S. Scholz, "Fluorescence-based sensors for in situ monitoring of river water quality," *Water Research*, vol. 48, pp. 301-316, 2014.

115. R. T. M. P. K. T. M. A. P. & B. Á. Piredda, "High-throughput sequencing of planktonic biodiversity reveals the dominance of picoeukaryotes and novel freshwater fungi in deep lakes.," *Molecular Ecology*, vol. 26(11), p. 28, 2017.

116. P. A. & M. L. K. Sims, "Evolution of the diatoms: V. Morphological and cytological features as indicators of phylogeny.," *Plant Systematics and Evolution*, vol. 304(1), pp. 127-157, 2018.

117. M. S. M. T. K. A. H. P. & D. L. Baptista, "Integrating remote sensing, GIS and species distribution modelling for the assessment of habitat quality and its use by the red panda (*Ailurus fulgens*) in the Hindu Kush-Himalayan region.," *PLoS One*, vol. 12(10), p. e0184644, 2017.

118. L. W. Z. & W. D. Lei, "Assessing the environmental risk of microplastics in aquatic systems: A critical review.," *Environmental Pollution*, vol. 252, pp. 1243-1252, 2019.

119. L. F. A. R. F. C. P. H. J. F. & B. A. Kermarrec, "A next-generation sequencing approach to river biomonitoring using benthic diatoms.," *Freshwater Science*, vol. 32(1), pp. 119-131, 2013.

120. C. H. N. B. B. F. N. C. D. A. & W. A. E. Bessey, "Next-generation sequencing captures the diversity of freshwater diatoms in the United States," *BMC Ecology*, vol. 18(1), p. 26, 2018.

121. K. B. H. M. M. E. S. M. L.-R. A. A. F. .. & B. L. Deiner, "Environmental DNA metabarcoding: transforming how we survey animal and plant communities.," *Molecular Ecology*, vol. 26(21), pp. 5872-5895, 2017.

122. B. J. M. P. J. R. M. J. H. A. W. J. A. J. & H. S. P. Callahan, "DADA2: high-resolution sample inference from Illumina amplicon data.," *Nature Methods*, vol. 13(7), pp. 581-583, 2016.

123. L. L. S. & S.-D. A. Basova, "Transcriptomics and proteomics for assessing the environmental stress response in algae: a review.," *Environmental Reviews*, vol. 27(4), pp. 444-456, 2019.

124. R. J. P. Y. V. d. B. M. C. & B. G. Stevenson, "The Use of Algae as Bioindicators.", Handbook of Cyanobacteria / CRC Press, pp. 251-265, 2015.
125. P. R. F. & E. T. Škaloud, "A Guilty Gene: Chemical Constituents of the *Gloeobacter* Cell Wall as a Tool to Study the Early Evolution of Cyanobacteria/Chloroplast Lineage.", Origin of Algae and their Plastids / Springer., pp. 107-126, 2013.
126. M. A. S. D. M. & B. J. A. Buchheim, "Phylogeny of the Chlorosarcinales (Cyanobacteria) as Inferred from rRNA Operon Sequence Data," *Journal of Phycology*, vol. 49(4), pp. 786-797, 2013.
127. J. D. S. R. G. & K. J. P. Wehr, "Freshwater Algae of North America: Ecology and Classification.", Academic Press, 2015.
128. F. V. H. & D. C. O. Leliaert, "Phylogenetic Significance of the Morphological Variation in the Tribe Laurencieae (Rhodomelaceae, Rhodophyta).," *Journal of Phycology*, vol. 42(1), pp. 158-168, 2006.
129. M. J. L. J. S. & C. J. R. García-Sánchez, "Seasonal variability in algal composition and biomass in a Mediterranean coastal lagoon: implications for water quality monitoring.,," *Marine Pollution Bulletin*, Vols. 84(1-2), pp. 230-240, 2014.
130. J. C. L. O. & N.-F. L. Padisák, "Use and misuse in the application of the phytoplankton functional classification: a critical review with updates.,," *Hydrobiologia*, Vols. 493(1-3), pp. 5-15, 2003.
131. M. M. E. R. K. S. B. M. & Z. H. Lürling, "Can macrophyte biomass affect sediment and internal phosphorus loading? A microcosm experiment in a hyper-eutrophic pond.,," *Hydrobiologia*, vol. 710(1), pp. 29-38, 2013.
132. A. M. A. & P. B. Sfriso, "The ecological quality of microalgal communities: biological indicators of nutrient and organic pollution in the Venice lagoon.,," *Marine Pollution Bulletin*, Vols. 70(1-2), pp. 75-86, 2013.
133. M. e. a. Beklioglu, "A review of the impact of multiple stressors on freshwater ecosystems," *Water Research*, vol. 44(1), pp. 180-194, 2009.
134. M. e. a. Lurling, "Effects of nutrients and zooplankton on the recruitment and succession of filamentous algae.,," *Freshwater Bi*, vol. 58(2), pp. 238-251, 2013.
135. P. M. e. a. Visser, "How rising CO₂ and global warming may stimulate harmful cyanobacterial blooms.,," *Harmful Algae*, vol. 54, pp. 145-159, 2016.
136. F. E. Round, "Why diatoms are good "soft" water quality indicators," *Hydrobiologia*, Vols. 336(1-3), pp. 171-181, 1996.
137. J. R. & C. E. W. Karr, "Sustaining living rivers.,," *Hydrobiologia*, pp. 45-54, 1997.