

Research Article

Arsenic Contamination at District Deoria (Uttar Pradesh), India

Jwala Prasad Mishra¹, Ankit Kumar²

¹Associate Professor, Department of Chemistry, National Post Graduate College, Barhaganj, Gorakhpur, Uttar Pradesh, India.

²Assistant Professor, Department of Biotechnology, Bansal Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India.

DOI: <https://doi.org/10.24321/2455.3093.202010>

INFO

Corresponding Author:

Ankit Kumar, Department of Biotechnology, Bansal Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India.

E-mail Id:

ankitkumarct@gmail.com

Orcid Id:

<https://orcid.org/0000-0003-3268-7575>

How to cite this article:

Mishra JP, Kumar A. Arsenic Contamination at District Deoria (Uttar Pradesh), India. J Adv Res Alt Energ Env Eco 2020; 7(1): 33-36.

Date of Submission: 2020-02-03

Date of Acceptance: 2020-03-02

ABSTRACT

In the present time arsenic contamination in ground water and its affect to human life have been one of the serious problems of world. The contamination of drinking water supplies with natural occurring arsenic is major health problem. In the present chapter, authors have studied the arsenic contamination at district Deoria (Uttar Pradesh), India. The complete study is divided in three regions of arsenic namely Region-I (safe region of the arsenic), Region-II (low risk region of arsenic) and Region-III (high risk region of arsenic). For this, authors selected seven study sites of district Deoria with two types of samples from shallow water and deep (India mark II) water. Results are presented in the tabular form and show that at five study sites (Bankata, Barhaj, Bhaluani, Rudrapur and Salempur) of district Deoria (Uttar Pradesh), India, concentration of arsenic both in the shallow as well as in the deep bore well water samples is found in high risk region (Region-III) while at the remaining two study sites (Bhatpar Rani and Tarkulwa) of district Deoria (Uttar Pradesh), India, concentration of arsenic both in the shallow as well as in the deep bore well water samples was found in low risk region (Region-II). Results also depict that the ground water of Bankata, Barhaj, Bhaluani, Bhatpar Rani, Rudrapur, Salempur and Tarkulwa is not fit for drinking without processing.

Keywords: Arsenic, Contamination, Deoria, Wagtech Digital Arsenator

Introduction

Consumption of arsenic contaminated water causes neurological problems, skin cancer, skin eczema, sensory disorder, pulmonary insufficiency, hypertension, acute renal failure, leukemia and peripheral vascular disease. The process of the development of human body is also affected by consuming contaminated arsenic water. Acharyya¹ discussed the source and mobilization process of arsenic

contamination in ground water which affecting major parts of the Southern West Bengal and Western Chattisgarh.

Bates et al.² studied the bladder cancer due to arsenic in drinking water. Bhattacharjee et al.³ determined the metal contents in the groundwater of Sahebgunj district, Jharkhand, India, with special reference to arsenic. Arsenic exposure through groundwater to the rural and urban population in the Allahabad-Kanpur track in the upper Ganga plain was discussed by Chakraborti et al.⁴ Chatterjee

et al.⁵ discovered ground water contamination by arsenic in the residential area of Behala, Calcutta due to industrial pollution. Chatterjee et al.⁶ studied the effect of arsenic in groundwater in six districts of West Bengal, India and determined that arsenic species are present in the drinking water and urine of the affected people of West Bengal.

Chaudhary et al.⁷ examined the ground water contamination in Ludhiana, Punjab, India. Chaurasia et al.⁸ gave a review on figure print of arsenic contaminated water in India. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water was discussed by Chen et al.⁹ Chowdhury et al.¹⁰ calculated ground water arsenic contamination in Bangladesh and West Bengal, India. Das et al.¹¹ analyzed arsenic in ground water in six districts of West Bengal, India. Das et al.¹² studied the effect of arsenic in ground water in six districts of West Bengal, India and determined that arsenic concentration was present in drinking water, hair, nail, urine, skin scale and liver tissues (biopsy) of the affected people of six districts of West Bengal, India.

Dhar¹³ showed that arsenic contamination of ground water is a major public problem in Bangladesh. A review of the arsenic cycle in natural waters was given by Ferguson and Gavis.¹⁴ Keya¹⁵ discussed the mental health of arsenic victims in Bangladesh. Mandal and Suzuki¹⁶ gave a review on the topic arsenic round the world. A case study of arsenic pollution of groundwater in parts of West Bengal was given by Mukopadhyay and Ghosh.¹⁷ Nahar¹⁸ examined some villages of Bangladesh and gave the impact of arsenic contamination in groundwater of these villages. Worldwide occurrences of arsenic in ground water were studied by Nordstrom.¹⁹

Safiullah²⁰ gave an overview on the arsenic pollution in the groundwater in Bangladesh. Sarker and Mohiudin²¹ discussed the impact of arsenic contamination in ground water on the socio-economic and cultural life of the people of Bangladesh. Arsenic contamination and its management were studied by Singh et al.²² Smedley and Kinniburgh²³ gave a review on the source, behavior and distribution of arsenic in natural waters. Smith et al.²⁴ determined that the people of Bangladesh are affected by many skin diseases due to contamination of drinking water by arsenic and very much needed for public health emergency.

Tripathi and Dwivedi²⁵ studied the effect of arsenic in groundwater of adjoining areas of Gorakhpur district (U.P.), India. Wyllie²⁶ gave an investigation of the source of arsenic in well water. Singh and Singh²⁷ discussed the problem of arsenic contamination in ground water of Ballia, Uttar Pradesh state, India. Katiyar and Singh²⁸ exposed the existence of arsenic in drinking water of the population of Ballia district and determined its correlation with blood arsenic level.

The main aim of this paper is to determine the effect of arsenic contamination at district Deoria (Uttar Pradesh), India.

Material and Methods

Seven study sites (Bankata, Barhaj, Bhaluani, Bhatpar Rani, Rudrapur, Salempur and Tarkulwa) were selected from the district Deoria (Uttar Pradesh), India for this study. There are two types of samples namely Shallow and Deep (India Mark II) of water are taken from each study sites. Total fourteen samples were collected. Samples were collected during the summer seasons in the months of June 2019 to August 2019 because in this time period water level remains lower. Authors have considered following important precautions in collecting the samples of water.

- Water samples were collected in neat, clean and transparency plastic bottles with tight bottles cap
- Gloves were used by authors when collecting these samples
- Samples were collected after ten minutes operating the pumps in order to get the fresh water
- Samples were kept in dark places to avoid direct sunlight because some changes might

All the collected samples are tested for arsenic determination in Environmental Biotechnology Laboratory of Bansal Institute of Engineering and Technology, Lucknow (U.P.), India. The reading of arsenic obtained using "Wagtech Digital Arsenator" (see Fig. 1) which has 1 ppb-500 ppb (parts per billion) range and present in the Environmental Biotechnology Laboratory of Bansal Institute of Engineering and Technology, Lucknow (U.P.), India.

Figure 1. Wagtech Digital Arsenator

Table 1.Arsenic Level of Water Samples of the Seven Selected Study Sites

S.No.	Name of Study Site	Water Depth	Region-I	Region-II	Region-III
1	Bankata	Shallow			20
		Deep (India Mark II)			16
2	Barhaj	Shallow			22
		Deep (India Mark II)			17
3	Bhaluani	Shallow			28
		Deep (India Mark II)			22
4	Bhatpar Rani	Shallow		10	
		Deep (India Mark II)		8	
5	Rudrapur	Shallow			21
		Deep (India Mark II)			16
6	Salempur	Shallow			23
		Deep (India Mark II)			18
7	Tarkulwa	Shallow		9	
		Deep (India Mark II)		7	

Table 2.Regions Of Arsenic Concentration

Region Name	Range of Arsenic Concentration
Region-I (safe region of the arsenic)	< 0 ppb to < 5 ppb
Region-II (low risk region of arsenic)	5 ppb to \leq 10 ppb
Region-III (high risk region of arsenic)	> 10 ppb

Results and Discussion

Results of our seven study sites obtained after analyzed the fourteen samples of water (Shallow and Deep) are presented in the Table 1. For better understanding of the results, authors divided the arsenic concentration in the three regions namely Region-I, Region-II and Region-III (see Table 2, Results depict that at five study sites (Bankata, Barhaj, Bhaluani, Rudrapur and Salempur) of district Deoria (Uttar Pradesh), India, concentration of arsenic both in the shallow as well as in the deep bore well water samples is found in high risk region (Region-III) while at the remaining two study sites (Bhatpar Rani and Tarkulwa) of district Deoria (Uttar Pradesh), India, concentration of arsenic both in the shallow as well as in the deep bore well water samples was found in low risk region (Region-II). Results also depict that the ground water of Bankata, Barhaj, Bhaluani, Bhatpar Rani, Rudrapur, Salempur and Tarkulwa is not fit for drinking without processing.

Conclusion

Results of the present study indicate that

- Ground water, shallow as well as in the deep bore well of district Deoria (Uttar Pradesh), India is not safe for the purpose of drinking
- The water of shallow bore wells is very harmful for residents of district Deoria (Uttar Pradesh), India
- At five study sites (Bankata, Barhaj, Bhaluani, Rudrapur and Salempur) of district Deoria (Uttar Pradesh), India, concentration of arsenic both in the shallow as well as in the deep bore well water samples were found in high-risk region (Region-III). At the remaining two study sites (Bhatpar Rani and Tarkulwa) of district Deoria (Uttar Pradesh), India, concentration of arsenic both in the shallow as well as in the deep bore well water samples were found in low-risk region (Region-II)
- The problem of arsenic contamination in the ground water at Bhaluani is a very serious problem for district Deoria (Uttar Pradesh), India

Recommendation

On the basis of the study, it is recommended that

- The ground water of Bankata, Barhaj, Bhaluani, Bhatpar Rani, Rudrapur, Salempur and Tarkulwa is not fit for drinking without purification
- Government should take some strict action for this issue and should also set up water purifier as many as possible at district Deoria (Uttar Pradesh), India

References

1. Acharyya SK. Arsenic contamination in ground water affecting major part of the Southern West Bengal and parts of Western Chattisgarh Source and mobilization process. *Current Science* 2002; 82: 740-744.
2. Bates MN, Smith AH, Cantor KP. Case-control study of bladder cancer and arsenic in drinking water. *American Journal of Epidemiology* 1995; 141: 523-530.
3. Bhattacharjee S, Chakravarty S, Maity S et al. Metal contents in the groundwater of Sahebgunj district, Jharkhand, India, with special reference to arsenic, *Chemosphere* 2005; 58(9): 1203-1217.
4. Chakraborti D, Ghorai SK, Das B et al. Arsenic exposure through groundwater to the rural and urban population in the Allahabad-Kanpur track in the upper Ganga plain. *Journal of Environmental Monitoring* 2009; 11(8): 1455-1459.
5. Chatterjee A, Das D, Chakraborti D. A study of ground water contamination by arsenic in the residential area of Behala, Calcutta due to industrial pollution. *Environmental Pollution* 1993; 80(1): 57-65.
6. Chatterjee A, Das D, Mandal BK et al. Arsenic in ground water in six districts of West Bengal, India The biggest arsenic calamity in the world, Part-I Arsenic species in drinking water and urine of the affected people. *Analyst* 1995; 120: 643-650.
7. Chaudhary C, Singh KP, Jacks G et al. Bhattacharya, P. (2001) Ground water contamination in Ludhiana, Punjab, India. *Journal of Indian Water Works Association* 1995; 33(3): 251-261.
8. Chaurasia N, Mishra A, Pandey SK. Fingure print of arsenic contaminated water in India A review. *Journal of Forensic Research* 2012; 3(10): 1-5.
9. Chen CJ, Chen CW, Wu MM et al. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. *British Journal of Cancer* 1992; 66(5): 888-892.
10. Chowdhury UK, Biswas BK, Chowdhury TR et al. Ground water arsenic contamination in Bangladesh and West Bengal, India. *Environmental Health Perspectives* 2000; 108: 393-397.
11. Das D, Chatterjee A, Mandal BK et al. Arsenic in ground water in six districts of West Bengal, India. *Environmental Geochemistry and Health* 1995; 18: 5-15.
12. Das D, Chatterjee A, Mandal BK et al. Arsenic in ground water in six districts of West Bengal, India The biggest the biggest arsenic calamity in the world, Part-II: Arsenic concentration in drinking water, hair, nail, urine, skin scale and liver tissues (biopsy) of the affected people. *Analyst* 1995; 120: 917-924.
13. Dhar RK. Ground water arsenic calamity in Bangladesh. *Current Science* 1997; 73: 48-59.
14. Ferguson JF, Gavis J. A review of the arsenic cycle in natural waters. *Water Research* 1972; 6: 1259-1274.
15. Keya MK. Mental health of arsenic victims in Bangladesh. *South African Anthropologist* 2004; 4: 215-223.
16. Mandal BK, Suzuki KT. Arsenic round the world: A review. *Talanta* 2002; 58: 201-235.
17. Mukopadhyay DK, Ghosh G. Arsenic pollution of groundwater in parts of West Bengal - A case study. *Indian Journal of Geosciences* 2010; 64(1-4): 41-48.
18. Nahar N. Impact of arsenic contamination in groundwater Case study of some villages in Bangladesh. *Environment, Development and Sustainability* 2009; 11(3): 571-588.
19. Nordstrom DK. Worldwide occurrences of arsenic in ground water. *Science* 2002; 296: 2143-2145.
20. Safiullah S. Arsenic pollution in the groundwater in Bangladesh: An overview. *Asian Journal of Water, Environment and Pollution* 2006; 4: 47-59.
21. Sarker PC, Mohiudin MD. Arsenic poisoning and its impact on the socio-economic and cultural life of the people of Bangladesh. *South Asian Anthropologists* 2002; 2: 97-102.
22. Singh CM, Singh AP, Raha P et al. Arsenic contamination and its management. *International Journal of Agriculture Environment and Biotechnology* 2010; 3(2): 175-177.
23. Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. *Applied Geochemistry* 2002; 17: 517-568.
24. Smith AH, Lingas EO, Rahman M. Contamination of drinking water by arsenic in Bangladesh: A public health emergency. *Bulletin of the World Health Organization* 2000; 78: 1093-2103.
25. Tripathi V, Dwivedi AK. Monitoring of arsenic in groundwater of adjoining areas of Gorakhpur district (UP) India. *Annals of Plant Sciences* 2018; 7(4): 2205-2208.
26. Wyllie J. An investigation of the source of arsenic in a well water. *Canadian Journal of Public Health* 1937; 28: 128.
27. Singh AL, Singh VK. Arsenic contamination in ground water of Ballia, Uttar Pradesh state, India. *Journal of Applied Geochemistry* 2015; 17(1): 78-85.
28. Katiyar S, Singh, D. Prevalence of arsenic exposure in population of Ballia district from drinking water and its correlation with blood arsenic level. *Journal of Environmental Biology* 2014; 35: 589-594.