

Review Article

Environmental Sustainable Bio-Plastics from Orange Peels

S Ravichandran,¹ Payal,² Rabia Ashraf,³ Tejasvi Pandey,⁴ S Brindha⁵

¹Professor in Chemistry, Lovely Professional University, Jalandhar, Punjab, India.

^{2,3}Student in Forensic Science, ⁴Assistant Professor in Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India.

⁵Assistant Professor, Department of Computer Applications, Vellalar College for Women, Thindal, Erode, Tamil nadu.

I N F O

Corresponding Author:

Tejasvi Pandey, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India.

E-mail Id:

tejasvi.25999@lpu.co.in

Orcid Id:

<https://orcid.org/0000-0001-7333-2450>

How to cite this article:

Ravichandran S, Payal, Ashraf R. Environmental Sustainable Bio-Plastics from Orange Peels. *J Adv Res Alt Energ Env Eco* 2023; 10(1&2): 19-22.

Date of Submission: 2023-07-04

Date of Acceptance: 2023-07-20

A B S T R A C T

Plastic is a synthetic material that can be molded into a variety of shapes and forms. It is created from diverse organic polymers like polyvinyl chloride (PVC), polyethylene, nylon, etc. Long carbon chain polymers is another name for it. Plastics are essential packaging materials in practically every industry of modern society. These plastics are resistant to microbial decomposition, which makes them difficult to decompose and allows them to survive a long time in the environment. All of these have seriously damaged the ecology. Alternative approaches to making bio-based plastics are strongly recommended in order to address this issue. Bio-based polymers come from renewable sources. A type of plastic that can be produced from plant starches is known as a bioplastic. Since they are not made from petroleum, they are better for the environment. We discuss the bioplastic created from orange peel in this article. Plastics made from natural materials like maize starch and food waste are known as bioplastics. They are biodegradable, as opposed to plastics made from fossil fuels. Bioplastics are hence considered to be less damaging to the environment.

Keywords: Bio-Plastic, Orange Peels, Biodegradation, Biodegradable Plastic

Introduction

There is growing interest in creating biopolymers that can replace current materials, particularly conventional plastics. Natural materials can be used to make biopolymers. The 21st century technologies focused on the production of bioplastic from waste sources are in great demand. Many sources are there from which bioplastic can be produced such as potato waste, mango seed, grape waste, pumpkin seed, coffee waste, banana waste and citrus fruit waste. A type of plastic called bio-plastics¹⁻⁵ is made from petroleum-derived renewable biomass feedstock. Bio-plastics are bio-based, biodegradable materials that give

producers and consumers a cutting-edge way to protect the environment and promote a sustainable future. When used, biodegradable plastic will entirely disintegrate into water and CO₂ without leaving behind any poisonous or detrimental residues in the environment because it is mostly created from natural materials like corn and wheat starch using less energy.⁶⁻⁹ Bioplastic has been chosen as an alternative for the synthetic plastics that people around the world are using. These Bio-plastics are derived from different biological resources like starch from corn, tapioca, cassava, wheat, rice, etc. which are eatable products. The world population is increasing and there are many people who don't even get food on daily basis. Considering this

reason, it has been extremely necessary to find out non-eatableproducts to make these biodegradable plastics. Researchers throughout the world have prepared bioplastic using fruitpeels of banana, orange Figure 1 etc. encouraging further work in this field.

Figure 1.Orange Peel

Materials and Methods

The bioplastic requires the following quantities of each component:

- 10mldistilledwater
- 0.5-1.5gglycerol
- 1.5gcornstarch
- 1mlofwhitevinegar
- 1-2dropsoffoodcoloring
- Stir all the ingredients together after combining them. With the spatula, combine all of the ingredients in the saucepan. Stir the mixture until most of the lumps are gone. The mixture will be milky white and very liquid at this point.
- Set the heat on the burner to medium-low and place the saucepan on it. As the mixture warms up, stir constantly. It should slowly boil. The liquid will become more transparent and start to thicken as it heated.
- When the mixture turns clear and thick, remove it from the heat.
- If you want to colour the plastic at this point, add one or two drops of food colouring.
- To allow the hot mixture to cool, spread it out onto a sheet of foil or parchment paper. The plastic must be moulded while still warm if you want to give it a certain shape. For information on moulding the plastic, refer to the last technique.
- The drying and hardening of the plastic will take some time. It will start to dry as it cools. The amount of time it takes for the plastic to dry can vary depending on its thickness. A smaller, thinner, larger piece will dry faster than a single, small, thick piece.
- For this procedure, keep the plastic in a cold, dry location.
- After two days, check the plastic to see if it has totally hardened.

Bio-Plastic from Orange Peel

According to studies,¹⁰⁻¹³ 8 million tonnes of orange residue are lost worldwide after juicing, which accounts for 50% of the orange. This residue is typically eliminated by burning, which results in the release of greenhouse gases like carbon dioxide, or by dumping into landfills, where the oil from rotting peels seeps into the soil and harms the plant. The same thing happens with the ground coffee. High number of coffeeshops in the city generates large quantities of spent coffee grounds aswaste production of large amount of waste inthenature. Environmental pollution is caused due to theplastic because ofhaving nonbiodegradableand they are full of harmful by products and chemicals which are released duringtheir break down process. Also the percentage of non-biodegradable wasteanbiodegradable waste increases day by day Which may cause soilpollution Figure 2.

Figure 1.Orange Peel

Figure 3.Environmental sustainability of Bio-plastic

Working Procedure

We had 4oranges and 25g coffee grounds to make bio-plastic. First wetook out the peels of all the oranges and keep The peels into the pot.Thenwepouredthewater intoitandheatit.Afterthatwetook outthepeels and put it in a Mixer grinder for some time until it get grind intothe small particles or into the powdered form. Then we mix up theIngredients such as 15 ml of water, 25g of tangerine, 25g of cornstarch, 2g sodium bicarbonate, 5ml lemon Juice, 5ml sage oil, 5mlvinegar in a bowl and heat it. After heating we gave it a shape of bowl.After that we put it in a microwave oven for 3-4 minutes and ourbio-plasticbowlgetsready Figure 3.

Advantages of Bio-Plastics

Although bio-plastics exhibit similar qualities to traditional plastics, they are the best packaging material for forward-thinking enterprises for the following reasons Figure 4.

Fewer Carbon Emissions

Over the course of its use, bio-plastics emit much fewer greenhouse gases than traditional plastics. Compared to other plastics, there are less emissions and less carbon produced during the manufacturing and disposal processes.

Enhanced Biodegradability

Contrary to conventional plastics, bio-plastics will spontaneously decompose over time in the correct circumstances. Natural decomposition of bio-plastics takes three to six months, but the average plastic take-out container may take 400 years to break down. Even when they do, common plastics return poisons to the environment, severely harming the environment and the world.

Less Plastic Pollution

Bioplastics can be composted. Additionally, since no chemicals or toxins were left behind once these things were used, less trash and air pollution was produced.

Improved Food Safety

Materials found in nature are used to create biodegradable products. They don't contain any hazardous compounds and don't present any concerns to the intended users. plastics that cannot be recycled, such as polyethylene terephthalate, the material used to make water bottles. Bio-plastics are practical, environmentally beneficial solutions for food packaging because they don't draw hazardous germs or release toxins back into the environment.

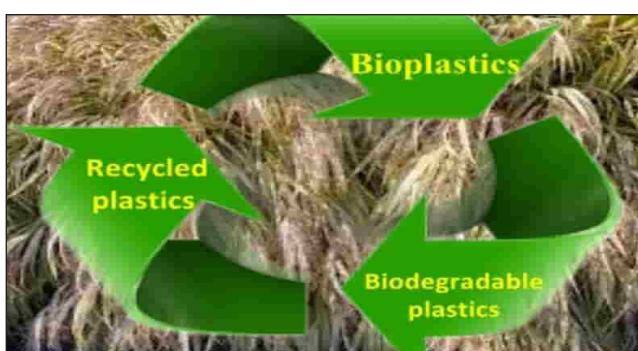


Figure 4. Future scope of Bio-plastic

Conclusion

Due to the massive quantity of pollution that synthetic plastics have produced, many scientists around the world are working to develop alternatives. Finding alternatives can prevent the environment from deteriorating further.

Keeping this in mind the present experiment was conducted. In the present study the bio-plastic was prepared using the fruit waste i.e., peels and very few ingredients, which makes it a reliable and economically convenient material to be used in future. The bio-plastic degraded very easily. The carbohydrate constituents that were present in the orange peels enabled the bio-plastic to degrade and proved that in future it can be of great help as packaging material. In future progress this can evolve into an appropriate replacement of the conventional synthetic plastics. Biodegradability and renewability are two sustainability ideas included into bio-based polymers known as bio-plastics. On the one hand, its usage in particular applications has been outlawed due to environmental concerns by bioplastics that breakdown to CO₂ and H₂O. Plastics. So, there is a need for a more environmentally friendly solution for food packaging and containers. Can be created in the environment. On the other hand, using renewable feedstock in place of petroleum, such as corn, sugarcane, algae, can reduce dependence on crude oil and have a smaller negative impact on the environment. The development of future studies in which various substances could be examined for their use in the biopolymer sector will greatly benefit from the findings of this study.

References

1. Chen, G. Q., & Patel, M. K. (2012). Plastics derived from biological sources: present and future: a technical and environmental review. *Chemical reviews*, 112(4), 2082-2099.
2. Chen, Y. J. (2014). Bioplastics and their role in achieving global sustainability. *Journal of Chemical and Pharmaceutical Research*, 6(1), 226-231.
3. Goodall, C. 2011. Bioplastic: An important component of global sustainability. *Carbon*
4. Jamróz, E., Kulawik, P., & Kopel, P. (2019). The effect of nanofillers on the functional properties of biopolymer-based films: A review. *Polymers*, 11(4), 675.
5. Jayachandra, Y., Patil, V., Ganachari, S., Banaprmath, N., Hunashyal, A., & Shettar, A. (2016). Biodegradable plastic production from fruitwaste material and its sustainable use for green application. *Int. J. Pharm. Res. Aliied Sci*, 5(4), 56-66.
6. Chandarana, J., & Chandra, S. (2021). Production of Bioplastics from banana peels. *International Journal of Scientific Research & Engineering Trends*, 7(1), 131-133.
7. Patil, N. (2018). Developments in Polymer Science and Engineering. *Journal of Polymer Sciences*, 4(2), 149-157.
8. Peelman, N., Ragaert, P., De Meulenaer, B., Adons, D., Peeters, R., Cardon, L., ... & Devlieghere, F. (2013). Application of bioplastics for food packaging. *Trends in Food Science & Technology*, 32(2), 128-141.
9. Luzzi, F., Torre, L., Kenny, J. M., & Puglia, D. (2019). Bio-

and fossil-based polymeric blends and nanocomposites for packaging: Structure–property relationship. *Materials*, 12(3), 471.

10. Yates, M. R., & Barlow, C. Y. (2013). Life cycle assessments of biodegradable, commercial biopolymers—A critical review. *Resources, Conservation and Recycling*, 78, 54-66.

11. Andrade, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364(1526), 1977-1984.

12. Orezzoli, A. V., Zavaleta, E., Pajares-Medina, N., Adlfo, S., & Linares, L. L. (2018). Physicochemical and mechanical characteristics of potato starch-based biodegradable films. *Asian Journal of Scientific Research*, 11(1), 56-61.

13. Yaradoddi JS, Banapurmath NR, Ganachari SV et al. Bio-based material from fruit waste of orange peel for industrial applications. *Journal of Materials Research and Technology* 2022; 17: 3186-3197.