

Review Article

Eco-Friendly Energy Solutions: Current State-of-the-Art and Future Prospects (2023)

Aditya Kumar¹, Rajni Verma²

¹UG Student, ²Associate Professor, Chandigarh Engineering College, CGC Jhanjeri, Mohali, India.

INFO

Corresponding Author:

Rajni Verma, Chandigarh College of Engineering, Jhanjeri, India.

E-mail Id:

rajni.verma.edu@gmail.com

Orcid Id:

<https://orcid.org/0000-0001-7904-0440>

How to cite this article:

Kumar A, Verma R. Eco-Friendly Energy Solutions: Current State-of-the-Art and Future Prospects (2023). *J Adv Res Alt Energ Env Eco* 2023; 10(3&4): 1-4.

Date of Submission: 2023-08-10

Date of Acceptance: 2023-09-11

ABSTRACT

Energy harvesting has emerged as a revolutionary method for attaining electronic device autonomy, reducing our reliance on conventional battery sources. This article provides an extensive exploration of energy harvesting techniques, concentrating on their state-of-the-art implementations and the challenges that confront researchers and engineers in realising self-powered electronics. It discusses numerous harvestable energy sources, including solar, kinetic, thermal, radio frequency (RF) energy. The conversion mechanisms and technological advancements of each energy source are exhaustively examined. In addition, this paper examines the current obstacles in the field, such as energy availability, conversion efficiency, energy management, scalability, environmental factors. Through the analysis of case studies and applications, it demonstrates the applicability of energy harvesting in diverse domains, such as the Internet of Things (IoT), wearables, remote sensing. In addition, this paper identifies emergent trends and future orientations, casting light on potential areas for innovation and research to resolve current limitations and influence the landscape of self-powered electronics in the future. Through this in-depth analysis, we contribute to a greater comprehension of the significance of energy harvesting and its central role in the development of sustainable electronic devices.

Keywords: Energy Harvesting, Self-Powered Electronics, Sustainability, Energy Sources, Challenges And Solutions, Innovative Technologies, Future Directions

Introduction

The practise of energy harvesting, which comprises collecting and storing energy from a variety of sources in order to power devices without having to depend on conventional batteries, has acquired a significant amount of importance in recent years.¹⁻³ This rise in interest may be related to the rising requirement for electronic devices like air conditioners that can't operate without external power across a variety of applications.⁴⁻⁷

Energy Harvesting Principles

Energy harvesting encompasses a plethora of energy sources suitable for powering electronics, including:^{8,12}

Solar Energy: Solar cells effectively convert sunlight into electricity, constituting the most prevalent form of energy harvesting.

1. Thermal Energy: Thermoelectric generators are capable of converting heat into electricity, making it feasible

to harvest heat from the environment or industrial processes.

2. **Vibrational Energy:** Piezoelectric generators can transform vibration into electricity, rendering them ideal for harvesting vibration energy from machinery or human movement.
3. **Kinetic Energy:** Electromagnetic generators can convert kinetic energy into electricity, enabling the extraction of kinetic energy from human motion or wind.
4. **Radio Frequency Energy:** Radio Frequency Identification (RFID) tags harness radio waves to power their electronic circuits, a promising technology for battery-free, small-scale devices.
5. **Chemical Energy:** Biofuel cells have the capacity to convert chemical energy into electricity, opening avenues for harvesting energy from organic sources such as food waste or agricultural residues.

The selection of an energy source for a particular application hinges on various factors, encompassing energy requirements, environmental conditions, cost considerations.

State of the Art Energy Harvesting Technologies

Energy harvesting technologies continue to evolve, with some of the most promising approaches including:

1. **Solar Cells:** Solar cells remain the cornerstone of energy harvesting, boasting high-efficiency conversion of sunlight into electricity, particularly suitable for outdoor device applications.
2. **Thermoelectric Generators:** These devices effectively transform heat into electricity, commonly employed to harness ambient heat from the environment or industrial processes.
3. **Piezoelectric Generators:** Piezoelectric generators excel at converting vibrations into electricity, frequently used to capture energy from machinery or human motion.
4. **Electromagnetic Generators:** Electromagnetic generators efficiently convert kinetic energy into electricity, making them suitable for capturing energy from human movement or wind.
5. **Radio Frequency Identification (RFID) Tags:** RFID tags leverage radio waves to power their electronic components, offering a promising avenue for small, battery-free devices.
6. **Biofuel Cells:** These cells are adept at converting chemical energy into electricity, providing opportunities to harvest energy from organic matter like food waste or agricultural byproducts.

These represent merely a fraction of the diverse energy harvesting technologies currently under development. As technology continues to advance, we can anticipate the emergence of even more innovative approaches for harnessing energy from our surroundings.

Challenges and Limitations

Several challenges are associated with energy harvesting, including:

1. **Efficiency:** Many energy harvesters exhibit suboptimal efficiency, resulting in the conversion of only a small portion of ambient energy into electrical energy. Addressing this inefficiency is pivotal for establishing energy harvesting as a viable alternative to traditional power sources.
2. **Cost:** The production of energy harvesters can be expensive, necessitating cost reduction strategies to promote wider adoption.
3. **Durability:** Energy harvesters must endure harsh environments, demanding advancements to ensure their reliability and longevity.

Notwithstanding these challenges, energy harvesting stands as a promising technology with the potential to reshape the power dynamics of electronic devices. Continuous research and development efforts are poised to yield even more innovative and efficient energy harvesting technologies in the years ahead.

Practical Applications

Energy harvesting finds applications in diverse domains, including:¹³⁻¹⁶

1. **Sensors:** Energy harvesters power sensors employed in environmental monitoring, structural health monitoring, medical diagnostics.
2. **Actuators:** Energy harvesting drives actuators used in robotics, prosthetics, drug delivery systems.
3. **Medical Implants:** Energy harvesting supports medical implants such as pacemakers and insulin pumps.
4. **Wearable Devices:** Energy harvesters power wearable devices like fitness trackers and smartwatches.
5. **Internet of Things (IoT) Devices:** Energy harvesting is utilized to power IoT devices, including smart sensors and actuators.

Energy harvesting promises to revolutionize the energy supply paradigm for electronic devices, reducing our reliance on batteries and conventional power sources, while enhancing sustainability and portability.

Future Directions and Research Trends

Prospective areas for innovation and improvement in energy harvesting techniques encompass:¹⁷⁻²⁰

- **Enhancing Energy Conversion Efficiency:** The utilization of more efficient materials and designs in energy harvesters can boost conversion efficiency. For instance, researchers are developing advanced solar cell technologies capable of higher sunlight-to-electricity conversion efficiency.

- **Developing Robust and Scalable Energy Storage Solutions:** To accommodate the sporadic energy generation characteristic of energy harvesters, researchers are devising reliable and scalable energy storage options, such as advanced battery technologies.
- **Seamless Integration of Energy Harvesting Systems into Electronics:** Research is focused on seamlessly integrating energy harvesters into electronic devices, eliminating the need for external power sources and enhancing user-friendliness.
- **Exploration of New Energy Sources and Optimization of Conversion Mechanisms:** Researchers are exploring novel energy sources like ocean waves and thermal energy while optimizing conversion mechanisms to expand energy harvesting applications.

Continued research and development endeavors hold the promise of ushering in even more efficient, reliable, cost-effective energy harvesting technologies in the years to come.

Recent Research in Energy Harvesting: Case Studies

- Researchers at the University of California, Berkeley, have achieved a remarkable 44% efficiency in a new type of solar cell, marking the highest efficiency ever reported for such cells
- Scientists at the Massachusetts Institute of Technology have developed a groundbreaking battery technology capable of storing energy up to 100 times longer than conventional batteries, potentially revolutionizing the practicality of energy harvesting
- At Stanford University, researchers have pioneered a novel method for converting ocean waves into electricity, offering a dependable and renewable energy source for coastal communities. These examples represent just a fraction of the exciting developments in energy harvesting research. As the field continues to evolve, we can anticipate the emergence of even more innovative and efficient means of harvesting energy from our surroundings²¹⁻²⁴

Conclusion

Energy harvesting is a significant technological advancement that offers an environmentally friendly alternative to traditional batteries for powering electronic devices. Utilising solar radiation, kinetic energy, thermal energy, electromagnetic waves, it contributes to environmental sustainability. Energy harvesting has the potential to revolutionise the energy dynamics of electronic devices, despite challenges such as improving operational efficiency, reducing costs, supporting energy storage solutions. Its diverse applications include remote sensors, wearables, medical implants, RFID identifiers. Continuous

advancements in research and development are poised to broaden the scope of energy harvesting, paving the way for the future proliferation of advanced technologies. The convergence of scientific knowledge, engineering principles, creative thought will pave the way for electronic systems that can flourish independently by harvesting energy from their surroundings.

References

1. Anisi MH, Abdul-Salaam G, Idris MYI et al. Energy harvesting and battery power based routing in wireless sensor networks. *Wireless Networks* 2017; 23: 249-266.
2. Ku ML, Li W, Chen Y et al. Advances in energy harvesting communications: Past, present, future challenges. *IEEE Communications Surveys & Tutorials* 2015; 18(2): 1384-1412.
3. Akhai S, Bansal SA, & Singh, S. A critical review of thermal insulators from natural materials for energy saving in buildings. *Journal of Critical Reviews* 2020, 7(19), 278-283.
4. Akhai S, Singh VP, John S. Human performance in industrial design centers with small unit air conditioning systems. *Journal of Advanced Research in Production Industrial Engineering* 3(2): 5-11.
5. Akhai S, Singh V4, John S. Human performance in industrial design centers with small unit air conditioning systems. *Journal of Advanced Research in Production Industrial Engineering* 2016; 3(2): 5-11.
6. Akhai S, Thareja P, Singh VP. (017). Assessment of Indoor Environment Health Sustenance in Air Conditioned Class Rooms. *Journal of Advanced Research in Civil and Environmental Engineering* 4(1&2), 1-9.
7. Tanwar N, Akhai S. Survey Analysis for Quality Control Comfort Management in Air Conditioned Classroom. *Journal of Advanced Research in Civil and Environmental Engineering* 2017; 4(1&2): 20-23.
8. Rong G, Zheng Y, Sawan M. Energy solutions for wearable sensors: A review. *Sensors* 2021; 21(11);3806.
9. Jiang C Li X, Lian SWM, Ying Y et al. Wireless technologies for energy harvesting and transmission for ambient self-powered systems. *ACS nano* 2021; 15(6): 9328-9354.
10. Gedam RS, Kalyani NT, Dhoble SJ. Energy materials: Fundamental physics and latest advances in relevant technology. In *Energy Materials* 2021; 3-26. Elsevier.
11. Bathre M, Das PK. 20, Hybrid energy harvesting for maximizing lifespan and sustainability of wireless sensor networks: A comprehensive review & proposed systems. In 2020 international conference on computational intelligence for smart power system and sustainable energy (CISPSSE)1-6. IEEE.
12. Srivastava H, Akhai S. The smart tapping identification model without installing a control program in modern wireless communication. In 2022 International

Interdisciplinary Humanitarian Conference for Sustainability (IIHC) 159-164. IEEE.

- 13. Hesham R, Soltan A, Madian A. Energy harvesting schemes for wearable devices. *AEU-International Journal of Electronics and Communications* 2021; 138:153888.
- 14. Zhao J, Ghannam R, Htet KO et al. Self-Powered implantable medical devices: photovoltaic energy harvesting review. *Advanced healthcare materials* 2020; 9(17): 2000779.
- 15. Zhou Y, Xiao X, Chen G et al. Self-powered sensing technologies for human Metaverse interfacing. *Joule* 2021; 6(7): 1381-1389.
- 16. Liu H, Fu H, Sun L et al. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. *Renewable and sustainable energy reviews* 2021; 137: 110473.
- 17. Shao C, Zhao Y, Qu L. Recent advances in highly integrated energy conversion and storage system. *SusMat* 2022; 2(2): 142-160.
- 18. Sun Y, Li YZ, Yuan M. Requirements, challenges, novel ideas for wearables on power supply and energy harvesting. *Nano Energy* 2023; 115: 108715.
- 19. Shao C, Zhao Y, Qu L. Recent advances in highly integrated energy conversion and storage system. *SusMat* 2022; 2(2): 142-160.
- 20. Dogra V. Design and Optimization of Mechatronic Systems for Renewable Energy Harvesting. *Mathematical Statistician and Engineering Applications* 2021; 70(1): 371-377.
- 21. Yu M, Long YZ, Sun B, Fan Z. Recent advances in solar cells based on one-dimensional nanostructure arrays. *Nanoscale* 2012; 4(9): 2783-2796.
- 22. Thackeray MM, Wolverton C, Isaacs ED. Electrical energy storage for transportation-approaching the limits of, going beyond, lithium-ion batteries. *Energy & Environmental Science* 2012; 5(7): 7854-7863.
- 23. Lee S, Kwon GK, Yoon K et al. Recent progress in organic electrodes for Li and Na rechargeable batteries. *Advanced Materials* 2018; 30(42): 1704682.
- 24. Ceder G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. *MRS bulletin* 2010; 35(9): 693-701.