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ABSTRACT

Hydroponics has gained prominence as a sustainable and resource-
efficient alternative to traditional soil-based agriculture. However,
maintaining optimal water quality in hydroponic systems requires
constant monitoring of critical parameters such as pH, electrical
conductivity (EC), and temperature. This paper presents a smart
hydroponic monitoring system that integrates loT-enabled sensors with
machine learning algorithms to provide real-time data acquisition and
water quality classification. The proposed hydroponic system, built on an
ebb and flow configuration, uses a Raspberry Pi 5 as the central controller
to process data from pH, EC, and temperature sensors. A comprehensive
dataset was collected and labelled based on established water quality
thresholds to train and evaluate several classification models, including
logistic regression, random forest, support vector machine (SVM), and
XGBoost. The XGBoost model achieved perfect performance (100%
accuracy, precision, recall, and F1-score) in classifying water conditions
as’'Safe’ or‘Unsafe’. The resulting model was serialised for deployment,
enabling real-time inference on the edge device. The work demonstrates
a scalable and cost-effective framework for enhancing automation in
hydroponic farming, aiming to improve plant health, optimise nutrient
management, and minimise human intervention through intelligent,
data-driven decision-making.

Keywords: Hydroponics, 10T, Machine Learning, Rasp- berry Pi,
Water Quality Monitoring, Smart Agriculture, XG- Boost

Introduction

The Ebb and Flow system, illustrated in Figure 1 periodi-
cally floods the plant root zone with nutrient-rich water and

Hydroponic farming is a soil-less cultivation technique
that supplies plants with nutrients through a water-based
solution, significantly improving resource use efficiency
and enabling high-yield, year-round production in diverse
environments.2? Modern hydroponic systems are classified
by nutrient delivery into several types including Nutrient
Film Technique (NFT), Deep Water Culture (DWC), Wick
systems, Drip systems, Aeroponics, and Ebb and Flow
(Flood and Drain).>*

then drains it back, allowing roots to absorb nutrients while
re- ceiving optimal oxygenation during the draining phase.>*¢
The above method is favored for its operational simplicity,
cost-effectiveness, scalability, and suitability for diverse crops
such as lettuce.>” These factors motivated its selection as
the foundational system for the current hydroponic project.
Despite significant technological advancements, many ex-
isting hydroponic systems still depend heavily on manual
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Figure 1. lllustration of the Ebb and Flow

hydroponic method8, where a programmable timer
and water pump circulate the nutrient solution

between the reservoir and the grow tray
monitoring and control, hindering scalability and precision.
Current limitations include insufficient continuous real-time
water quality monitoring, lack of integrated Al-driven deci-
sion support systems, and restricted automation feasible
for small-scale or research deployments. Furthermore,
existing implementations often neglect dynamic nutrient
management through comprehensive machine learning
approaches directly tied to environmental sensor data.>*°

fl

Reservoir

The proposed project developed a smart hydroponic system
based on the ebb and flow method, incorporating key
environmental sensors (pH, electrical conductivity (EC), and
temperature) connected to a Raspberry Pi controller for
automated data acquisition and process control. Machine
learning models, including logistic regression, random
forest, support vector machine (SVM), and XGBoost, are
trained on sensor data to assess water safety and optimise
nutrient delivery.

By combining sensor automation with Al-driven analytics,
the system aims to improve crop yield quality and resilience
while remaining scalable, cost-effective, and compatible with
urban farms, research labs, and commercial greenhouses.
The demonstrated approach exemplifies how intelligent
automation can enhance precision hydroponic farming.

Related Work

Recent advances in hydroponic cultivation have increasingly
integrated Internet of Things (loT) technologies and
machine learning (ML) algorithms to enable precision
farming, auto- mated environmental control, and robust
crop health monitoring. These technologies facilitate plant
growth optimisation through continuous data acquisition
and intelligent decision- making.

Rahman et al.® introduced an AloT-based framework
employing sensor networks to monitor critical parameters
such as pH, temperature, humidity, and moisture levels,
utilizing cloud-based analytics for real-time adjustments
and demon- strating the synergy of Aland IoT in enhancing

hydroponic farm efficiency. Building upon the potential of Al
integra- tion, Dutta et al.1® emphasized machine learning’s
role in automating essential hydraulic and environmental
parameters, including nutrient management and water
usage, thereby en- abling sustainable hydroponic farming
with reduced resource wastage. Extending this approach,
Mehare and Gaikwad! developed a smart hydroponic
system combining loT with supervised classification
algorithms such as Logistic Regres- sion, Random Forests,
and SVM, leveraging fog computing for latency-sensitive
decisions and minimized cloud reliance. To further enhance
automation, Gokul et al.*? implemented loT platforms
integrated with advanced machine learning algorithms for
dynamic environmental regulation, effectively reducing
labor intensity and bolstering resource use efficiency.
Complementing these environmental controls, Singh et al.®
demonstrated a mobile-app-connected loT hydroponic farm
management system, facilitating remote monitoring and
control, which improved accessibility and user engagement.

Beyond sensor-based environmental monitoring, visual
analytics have also gained traction, with Raspberry Pi-
based computer vision techniques applied for early
detection of crop diseases and stress using datasets such
as those from Kaggle!*** thus advancing multi-modal
smart farming solutions. Bhatia et al.’® contributed by
developing a cloud-connected hydroponic system with
real-time edge analytics, increasing data throughput and
enabling rapid fault detection—features essential for
commercial scalability. Moreover, Chen et al.” applied deep
learning methods to extensive hydroponic sensor datasets,
achieving predictive analytics for crop yield forecasting
and resource optimisation. Despite these advancements,
challenges persist in effectively integrating heterogeneous
data sources, ensuring robust and secure loT deployments,
and designing interpretable machine learning models that
trustfully support growers’ decision-making, motivating
ongoing research in the field.'®*°

The study contributes by designing a comprehensive loT
hydroponics framework based on an ebb and flow system,
augmented with machine learning models that optimise
nutrientdelivery, improve water quality management,
and support predictive crop health monitoring for lettuce
cultivation.

Materials and Methods

Experimental Setup and Hydroponic System
Configuration

A custom-built Ebb and Flow hydroponic system was
designed for lettuce cultivation, comprising a reservoir,
grow trays, water pump, and timer-based flood-drain
controlillus-trated in Figure 2. The cyclic flooding promotes
nutrient ab- sorption and root oxygenation, supporting
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healthy plant growth.> The nutrient solution used is the
UrbanKisaan Nutrient A & B Solution, a two-part liquid
fertilizer where equal parts of solution A and B are mixed
with water. This solution is suitable for a variety of leafy
greens including lettuce, spinach, basil, kale, and arugula,
providing the essential macronutrients and micronutrients
required for optimal plant development.

Pots with
their growing
medium

- =
Y, o®®
RS

|

b Water Pump

Sensors (pH, EC,
Temperature)

Figure 2. Experlmental Ebb and Flow hydroponic
system show- ing reservoir, grow tray, and piping.
The cyclic flood and drain cycle ensures oxygenated
roots and nutrient distribution, a critical feature
supporting system efficacy

Key Hardware Components

The hardware foundation of the smart hydroponic
system integrates a suite of precise sensors, control
units, actuation devices, and supporting power and data
management components to achieve robust environmental
monitoring and automated irrigation control. Essential
sensors include an Analogue pH Sensor Kit to measure the
acidity or alkalinity of the nutrient solution, a Gravity 12C
Electrical Conductivity (EC) Meter that quantifies nutrient
concentration in terms of electrical conductivity, and a
DS18B20 waterproof temperature sensor to monitor root
zone temperature conditions critical for plant metabolism.

All analogue sensor outputs are converted to digital signals
by a 16-bit ADS1115 Analogue-to-Digital Converter (ADC),
which interfaces with the Raspberry Pi 5 microcontroller
serving as the system’s computation and control hub.
The Raspberry Pi orchestrates sensor data acquisition,
preprocessing, and machine learning inference and
controls irrigation pump operation based on time schedules
managed by a digital programmable timer.

Water circulation is provided by a submersible water pump,
enabling reliable flood and drain cycles characteristic of
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the Ebb and Flow hydroponics system. A regulated 5V, 3A
power supply supplies all electronics with stable current
and voltage, ensuring uninterrupted system operation. Data
storage is handled on a local 256GB micro SD card located
on the Raspberry Pi, allowing for offline data logging and
model deployment.

The physical layout and connections of these components
are visually depicted in Figure 3, demonstrating the
compact, practical arrangement implemented for reliable
system functionality.

Raspberry Pi

N\
Breadboal r\;

Figure 3.Circuit connection showing sensor output
wiring through the ADSI 115 16-bit Analog-to-
Digital Converter (ADC) module interfaced via 12C
with the Raspberry Pi GPIO pins. The components
include the Analog pH sensor, Gravity 12C Electrical
Conductivity (EC) meter, and DS18B20 waterproof
temperature sensor

Dataset Description and Acquisition

The dataset used in the study comprises real-time sensor
data collected from the smart Ebb and Flow hydroponic
system. Critical environmental parameters, including
pH, electrical conductivity (EC), and temperature, were
continuously monitored using calibrated analogueue
sensors connected via a high-precision 16-bit ADS1115
analogueue-to-digital converter to a Raspberry Pi 5
controller.

Sampling was performed at regular 10-second intervals
over a continuous 7-day period, resulting in approximately
10,000 multi-sensor readings, each timestamped for
accurate temporal analysis.

Samples are automatically labeled based on established
water quality thresholds: pH (5.5-6.5), EC(1.2 - 2.4 mS/cm),
and temperature (18°C - 26°C). Labels of ‘Safe’ or "Unsafe’
provide ground truth for supervised machine learning to
detect optimal nutrient solution conditions.

Table | illustrates a sample segment of the dataset with
typi- cal sensor measurements and their corresponding
safety status labels, capturing normal variations and critical
deviations in the nutrient solution.
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Table I.Sample of the Dataset Collected

Timestamp | Temp (°C) | pH | EC (uS/cm) | Status
Tososao | 206 |sE| 19 | sk
Copasar | 206 |7 14 | s
el Ml il I
Cooasas | 212 |562| o |unsare
Cossay | 210 |576| s |unsare

The collected data initially stored locally on the Raspberry
Piin CSV format for secure offline storage. It is then periodi-
cally uploaded to Google Drive via automated API calls
using a Google Cloud Platform service account, facilitating
remote access for monitoring and analysis.

The comprehensive data acquisition and management
pipeline ensures robust data quality and availability to
support machine learning-driven precision hydroponic
monitoring and control.

System Workflow

The smart hydroponic system operates through an
integrated data flow beginning with sensor measurement
collection within the hydroponic setup. Analogue signals
from pH, electrical conductivity (EC), and temperature
sensors are converted to digital values viaan ADS1115 ADC
module interfaced with a Raspberry Pi 5. The Raspberry Pi
continuously logs these sensor readings with timestamps
and temporarily stores data locally in CSV files. At scheduled
intervals, data is securely uploaded to cloud storage using
the Google Drive APl authenticated with a service account.
The hydroponic setup ensures data persistence and enables
remote monitoring and analysis. Preprocessed data is
analysed using machine learning models to classify water
safety status, enabling timely interventions. Results and
system statuses are visualised on a web dashboard for
easy monitoring by operators.

Figure 4 illustrates end-to-end data acquisition, cloud
inte- gration, machine learning inference, and visualization
work- flow supporting precision hydroponic management.

Machine Learning Workflow

Preprocessed sensor datasets are divided into training and
test sets using 5-fold cross-validation to mitigate overfitting.
Feature engineering includes normalisation and optional
time- series feature extraction.

Classification models employed include Logistic Regres-
sion, Random Forest, SVM, and XGBoost. Hyperparameter
tuning is conducted using grid search methods. The best
per- forming model is serialized for deployment on
the Raspberry Pi to enable near-real-time water safety
evaluation.

The system architecture supports scalable extension, in-
cluding potential integration of additional sensors or control
elements.

Experimental Protocols

The system was tested with a 7-day indoor lettuce
cultivation experiment, during which environmental data
were continuously logged and analysed. Machine learning
models were retrained daily with newly collected data to
reflect current conditions.

Model evaluation incorporated standard classification
metrics such as accuracy, precision, recall, F1-score, and
confusion matrices, alongside operational reliability checks
to validate system robustness in practical settings.

Sensors
{ 1
[ pH Sensor ] [ EC Sensor] [Temperature ]
Sensor

Sensor data sent
to Raspberry Pi

Cloud save
(G ooglel Drive)

ML inference
I

[ Preprocessing & J

{ 1) 1
Classification Regression Disease Prediction
(Safe /Unsafe) (PH/EC prediction) (Healthy/Unhealthy)

Web dashboard

Figure 4.Workflow diagram of the smart
hydroponic system illustrating data acquisition from
sensors, local processing, cloud upload for remote
access, machine learning inference to predict water
safety, and visualization on a web-based dashboard.
This sequence enables integrated automation and
monitoring for optimal plant growth

ISSN: 3117-4809
DOI: https://doi.org/10.24321/3117.4809.202603




Kumari P & Singh A
Int. J. Adv. Res. Artif. Intell. Mach. Learn. Rev. 2026; 2(1)

Results

The trained machine learning models were evaluated
using a dataset of accurately labeled water quality
readings, enabling a thorough assessment of classification
performance and relia- bility. Five distinct algorithms -
Logistic Regression, Random Forest, Support Vector
Machine (SVM), XGBoost, and Tuned Random Forest
were benchmarked. Table Il summarizes their statistical
evaluation metrics, including accuracy, precision, recall,
F1 score, and 5-fold cross-validation F1 mean.

Table 2.Performance Metrics for Sensor-
based Classification Models shows that the
model correctly identified all instances, with no
misclassifications in either the Safe or Unsafe

Confusion Matrix: XGBoost

600

500
safe

400

- 300

True Tabel

200

unsafe 4

100

categories safe ) unsafe
Predicted label
Model Accu- | Preci- | Recall | Score F1 Figure 5.Confusion matrix for XGBoost: shows
racy sion F1 CV | Mean perfect sepa- ration of safe and unsafe water status
Logistic predictions, confirming model robustness and
Regres- | 0.8871 | 0.8903 | 0.8662 | 0.8781 | 0.8816 reliability
sion Model discrimination capability was further compared using
Random ROC curves illustrated in Figure 6, where both XGBoost
Forest 0.9983 | 1.0000 | 0.9964 | 0.9982 | 0.9989 and Random Forest (tuned and default) achieved an Area
Under the Curve (AUC) of 1.00, indicating optimal sensitivity
SVM 0.9686 | 0.9624 | 0.9711 | 0.9667 | 0.9657 and specificity. Logistic Regression and SVM also Model
XGBoost | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9984 Accuracy Precision Recall F1 Score CV F1 Mean performed
Tuned strongly, with AUC values of 0.90 and 0.99, respectively
Random | 0.9983 | 1.0000 | 0.9964 | 0.9982 | 0.9987 demonstrating that the system consistently identifies water
Forest safety with high fidelity across algorithm choices.

The exceptionally high performance can be attributed to the
clear separation between the safe and unsafe classes, the
stability of sensor data in controlled laboratory conditions,
and the precise labelling of hydroponic water quality status.
Additionally, XGBoost’s built-in regularisation mechanisms
help minimise overfitting to redundant or correlated
features, which further reinforces its accuracy.’®?® The
evaluation employed rigorous 5-fold cross-validation to
avoid training-test leakage.

Nevertheless, perfect accuracy obtained here may not
fully reflect performance in uncontrolled, real-world
scenarios, where greater variability, sensor noise, or novel
data distributions could arise. For reliable generalisation,
it is recommended to periodically retrain and monitor
the model with fresh operational data, especially when
the system is deployed in diverse environments or over
extended periods.
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Prediction using the trained XGBoost model on new,
unseen sensor data demonstrated its robust generalization
capability. The model confidently classified the water
quality status as Safe with a high predicted probability
of 99.7%, indicating Among these, the XGBoost model
demonstrated perfect

classification, with accuracy, precision, recall, and F1 scores
all reaching 1.0, as validated by the full classification report.
The confusion matrix for XGBoost illustrated in Figure
5 clearly strong certainty in its predictions. Such high
confidence scores are critical in real-time applications
where timely interventions are required to maintain optimal
hydroponic conditions. The sample predictions, which
include timestamps, actual waterstatus, predicted status,
and probability of unsafe conditions, consistently show
excellent agreement between the model’s output and
ground truth labels, affirming the model’s accuracy under
diverse environmental fluctuations.
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Sample predictions on new sensor data alongside prediction
probabilities are presented in Table lll. These illustrate con-
sistent and confident classifications aligning well with actual
water safety conditions, validating model effectiveness in
live deployment scenarios.

ROC Curves

0.8

o
o

True Positive Rate
I
~

Logistic Regression (AUC = 0.91)
Random Forest (AUC = 1.00)
SVM (AUC = 0.99)

XGBoost (AUC = 1.00)

0.2 4

,/’ Random Forest (Tuned) (AUC = 1.00)
0.0 1 --- Chance (AUC=0.5)
0.0 02 04 06 038 10

False Positive Rate

Figure 6.ROC curve comparison for multiple
algorithms. XG- Boost and Random Forest (tuned)
models yielded perfect classification results, while
all models demonstrated strong predictive ability in
distinguishing safe and unsafe water states

Table 3.Sample Predictions with Probability of
Unsafe Class

Timestamp Actual | Predicted | Probability

Status Status Unsafe
Gsaray | | s | 000050
Gsasm | | W | oo
Gsasa | | s | 000050
g, | safe safe | 0.000991
2| sate safe | 0.001314
zgészgiim safe safe 0.001379
e | sate safe | 0.001367

Conclusion

The developed smart hydroponic system effectively inte-
grates precise environmental sensors with advanced
machine learning models to enable real-time classification of
nutrient solution safety. By automating water and nutrient
delivery based on sensor data, the system significantly
reduces resource waste, promoting sustainable agriculture
practices that mini- mize ecological impact.

Based on findings reported in similar hydroponic systems,
the automation of irrigation and nutrient delivery is esti-
mated to reduce water consumption by approximately
20-30%, while improving nutrient use efficiency by roughly
30% through real-time monitoring of electrical conductivity
(EC) and precise dosing adjustments. These anticipated
improve- ments highlight the potential of automated smart
hydroponic frameworks to promote sustainable resource
management and minimize environmental impacts.
However, further direct ex- perimental validation within
our specific system is recom- mended to confirm these
benefits.

Leveraging loT-enabled continuous monitoring and data-
driven model inference, this approach supports smart re-
source management, maintaining optimal growth conditions
and improving crop yield quality. The framework’s modular
design allows scalability and adaptation for varied cultivars
and farming setups, including urban agriculture and
controlled- environment horticulture.

The system exemplifies how integrating sensor technology,
machine learning, and automation can drive sustainable
farming innovations. It offers pathways to reduce water
and fertiliser usage, lower operational costs, and build
resilience against climate variability, thereby contributing
comprehensively to global sustainability and food security
goals.

Future research will focus on incorporating additional
sensing modalities, which means integrating new types
of sensors such as humidity, light intensity, or spectral
imaging sensors for disease prediction to gather more
comprehensive environmental and plant health data. It will
also involve deploying adaptive learning algorithms that
can continuously learn and update themselves to cope with
changing environmental conditions, such as seasonal shifts
or sensor drift, thus ensuring robust and accurate system
performance over time. Furthermore, efforts will be made
to extend remote monitoring capabilities to allow users
to access real-time system data and control functionalities
through internet-connected devices, enhancing usability
and enabling timely interventions even from distant
locations.
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