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I N F O A B S T R A C T

Hydroponics has gained prominence as a sustainable and resource-
efficient alternative to traditional soil-based agriculture. However, 
maintaining optimal water quality in hydroponic systems requires 
constant monitoring of critical parameters such as pH, electrical 
conductivity (EC), and temperature. This paper presents a smart 
hydroponic monitoring system that integrates IoT-enabled sensors with 
machine learning algorithms to provide real-time data acquisition and 
water quality classification. The proposed hydroponic system, built on an 
ebb and flow configuration, uses a Raspberry Pi 5 as the central controller 
to process data from pH, EC, and temperature sensors. A comprehensive 
dataset was collected and labelled based on established water quality 
thresholds to train and evaluate several classification models, including 
logistic regression, random forest, support vector machine (SVM), and 
XGBoost. The XGBoost model achieved perfect performance (100% 
accuracy, precision, recall, and F1-score) in classifying water conditions 
as ’Safe’ or ’Unsafe’. The resulting model was serialised for deployment, 
enabling real-time inference on the edge device. The work demonstrates 
a scalable and cost-effective framework for enhancing automation in 
hydroponic farming, aiming to improve plant health, optimise nutrient 
management, and minimise human intervention through intelligent, 
data-driven decision-making.
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Introduction
Hydroponic farming is a soil-less cultivation technique 
that supplies plants with nutrients through a water-based 
solution, significantly improving resource use efficiency 
and enabling high-yield, year-round production in diverse 
environments.1,2 Modern hydroponic systems are classified 
by nutrient delivery into several types including Nutrient 
Film Technique (NFT), Deep Water Culture (DWC), Wick 
systems, Drip systems, Aeroponics, and Ebb and Flow 
(Flood and Drain).3,4

The Ebb and Flow system, illustrated in Figure 1 periodi- 
cally floods the plant root zone with nutrient-rich water and 
then drains it back, allowing roots to absorb nutrients while 
re- ceiving optimal oxygenation during the draining phase.3,5,6 
The above method is favored for its operational simplicity, 
cost-effectiveness, scalability, and suitability for diverse crops 
such as lettuce.5,7 These factors motivated its selection as 
the foundational system for the current hydroponic project. 
Despite significant technological advancements, many ex- 
isting hydroponic systems still depend heavily on manual
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hydroponic farm efficiency. Building upon the potential of AI 
integra- tion, Dutta et al.10 emphasized machine learning’s 
role in automating essential hydraulic and environmental 
parameters, including nutrient management and water 
usage, thereby en- abling sustainable hydroponic farming 
with reduced resource wastage. Extending this approach, 
Mehare and Gaikwad11 developed a smart hydroponic 
system combining IoT with supervised classification 
algorithms such as Logistic Regres- sion, Random Forests, 
and SVM, leveraging fog computing for latency-sensitive 
decisions and minimized cloud reliance. To further enhance 
automation, Gokul et al.12 implemented IoT platforms 
integrated with advanced machine learning algorithms for 
dynamic environmental regulation, effectively reducing 
labor intensity and bolstering resource use efficiency. 
Complementing these environmental controls, Singh et al.13 

demonstrated a mobile-app-connected IoT hydroponic farm 
management system, facilitating remote monitoring and 
control, which improved accessibility and user engagement.

Beyond sensor-based environmental monitoring, visual 
analytics have also gained traction, with Raspberry Pi-
based computer vision techniques applied for early 
detection of crop diseases and stress using datasets such 
as those from Kaggle14,15 thus advancing multi-modal 
smart farming solutions. Bhatia et al.16 contributed by 
developing a cloud-connected hydroponic system with 
real-time edge analytics, increasing data throughput and 
enabling rapid fault detection—features essential for 
commercial scalability. Moreover, Chen et al.17 applied deep 
learning methods to extensive hydroponic sensor datasets, 
achieving predictive analytics for crop yield forecasting 
and resource optimisation. Despite these advancements, 
challenges persist in effectively integrating heterogeneous 
data sources, ensuring robust and secure IoT deployments, 
and designing interpretable machine learning models that 
trustfully support growers’ decision-making, motivating 
ongoing research in the field.18,19

The study contributes by designing a comprehensive IoT 
hydroponics framework based on an ebb and flow system, 
augmented with machine learning models that optimise 
nutrientdelivery, improve water quality management, 
and support predictive crop health monitoring for lettuce 
cultivation.

Materials and Methods
Experimental Setup and Hydroponic System 
Configuration

A custom-built Ebb and Flow hydroponic system was 
designed for lettuce cultivation, comprising a reservoir, 
grow trays, water pump, and timer-based flood-drain 
control illus- trated in Figure 2. The cyclic flooding promotes 
nutrient ab- sorption and root oxygenation, supporting 

 Figure 1. Illustration of the Ebb and Flow 
hydroponic method8, where a programmable timer 

and water pump circulate the nutrient solution 
between the reservoir and the grow tray

monitoring and control, hindering scalability and precision. 
Current limitations include insufficient continuous real-time 
water quality monitoring, lack of integrated AI-driven deci- 
sion support systems, and restricted automation feasible 
for small-scale or research deployments. Furthermore, 
existing implementations often neglect dynamic nutrient 
management through comprehensive machine learning 
approaches directly tied to environmental sensor data.9,10

The proposed project developed a smart hydroponic system 
based on the ebb and flow method, incorporating key 
environmental sensors (pH, electrical conductivity (EC), and 
temperature) connected to a Raspberry Pi controller for 
automated data acquisition and process control. Machine 
learning models, including logistic regression, random 
forest, support vector machine (SVM), and XGBoost, are 
trained on sensor data to assess water safety and optimise 
nutrient delivery.

By combining sensor automation with AI-driven analytics, 
the system aims to improve crop yield quality and resilience 
while remaining scalable, cost-effective, and compatible with 
urban farms, research labs, and commercial greenhouses. 
The demonstrated approach exemplifies how intelligent 
automation can enhance precision hydroponic farming.

Related Work
Recent advances in hydroponic cultivation have increasingly 
integrated Internet of Things (IoT) technologies and 
machine learning (ML) algorithms to enable precision 
farming, auto- mated environmental control, and robust 
crop health monitoring. These technologies facilitate plant 
growth optimisation through continuous data acquisition 
and intelligent decision- making.

Rahman et al.9 introduced an AIoT-based framework 
employing sensor networks to monitor critical parameters 
such as pH, temperature, humidity, and moisture levels, 
utilizing cloud-based analytics for real-time adjustments 
and demon- strating the synergy of AI and IoT in enhancing 
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healthy plant growth.5,6 The nutrient solution used is the 
UrbanKisaan Nutrient A & B Solution, a two-part liquid 
fertilizer where equal parts of solution A and B are mixed 
with water. This solution is suitable for a variety of leafy 
greens including lettuce, spinach, basil, kale, and arugula, 
providing the essential macronutrients and micronutrients 
required for optimal plant development.

the Ebb and Flow hydroponics system. A regulated 5V, 3A 
power supply supplies all electronics with stable current 
and voltage, ensuring uninterrupted system operation. Data 
storage is handled on a local 256GB micro SD card located 
on the Raspberry Pi, allowing for offline data logging and 
model deployment.

The physical layout and connections of these components 
are visually depicted in Figure 3, demonstrating the 
compact, practical arrangement implemented for reliable 
system functionality.

 Figure 2.Experimental Ebb and Flow hydroponic 
system show- ing reservoir, grow tray, and piping. 

The cyclic flood and drain cycle ensures oxygenated 
roots and nutrient distribution, a critical feature 

supporting system efficacy

Key Hardware Components
The hardware foundation of the smart hydroponic 
system integrates a suite of precise sensors, control 
units, actuation devices, and supporting power and data 
management components to achieve robust environmental 
monitoring and automated irrigation control. Essential 
sensors include an Analogue pH Sensor Kit to measure the 
acidity or alkalinity of the nutrient solution, a Gravity I2C 
Electrical Conductivity (EC) Meter that quantifies nutrient 
concentration in terms of electrical conductivity, and a 
DS18B20 waterproof temperature sensor to monitor root 
zone temperature conditions critical for plant metabolism.

All analogue sensor outputs are converted to digital signals 
by a 16-bit ADS1115 Analogue-to-Digital Converter (ADC), 
which interfaces with the Raspberry Pi 5 microcontroller 
serving as the system’s computation and control hub. 
The Raspberry Pi orchestrates sensor data acquisition, 
preprocessing, and machine learning inference and 
controls irrigation pump operation based on time schedules 
managed by a digital programmable timer.

Water circulation is provided by a submersible water pump, 
enabling reliable flood and drain cycles characteristic of 

 Figure 3.Circuit connection showing sensor output 
wiring through the ADS1115 16-bit Analog-to-

Digital Converter (ADC) module interfaced via I2C 
with the Raspberry Pi GPIO pins. The components 

include the Analog pH sensor, Gravity I2C Electrical 
Conductivity (EC) meter, and DS18B20 waterproof 

temperature sensor
Dataset Description and Acquisition
The dataset used in the study comprises real-time sensor 
data collected from the smart Ebb and Flow hydroponic 
system. Critical environmental parameters, including 
pH, electrical conductivity (EC), and temperature, were 
continuously monitored using calibrated analogueue 
sensors connected via a high-precision 16-bit ADS1115 
analogueue-to-digital converter to a Raspberry Pi 5 
controller.

Sampling was performed at regular 10-second intervals 
over a continuous 7-day period, resulting in approximately 
10,000 multi-sensor readings, each timestamped for 
accurate temporal analysis.

Samples are automatically labeled based on established 
water quality thresholds: pH (5.5 - 6.5), EC (1.2 - 2.4 mS/cm), 
and temperature (18°C - 26°C). Labels of ’Safe’ or ’Unsafe’ 
provide ground truth for supervised machine learning to 
detect optimal nutrient solution conditions.

Table I illustrates a sample segment of the dataset with 
typi- cal sensor measurements and their corresponding 
safety status labels, capturing normal variations and critical 
deviations in the nutrient solution.
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The collected data initially stored locally on the Raspberry 
Pi in CSV format for secure offline storage. It is then periodi- 
cally uploaded to Google Drive via automated API calls 
using a Google Cloud Platform service account, facilitating 
remote access for monitoring and analysis.

The comprehensive data acquisition and management 
pipeline ensures robust data quality and availability to 
support machine learning-driven precision hydroponic 
monitoring and control.

System Workflow
The smart hydroponic system operates through an 
integrated data flow beginning with sensor measurement 
collection within the hydroponic setup. Analogue signals 
from pH, electrical conductivity (EC), and temperature 
sensors are converted to digital values via an ADS1115 ADC 
module interfaced with a Raspberry Pi 5. The Raspberry Pi 
continuously logs these sensor readings with timestamps 
and temporarily stores data locally in CSV files. At scheduled 
intervals, data is securely uploaded to cloud storage using 
the Google Drive API authenticated with a service account. 
The hydroponic setup ensures data persistence and enables 
remote monitoring and analysis. Preprocessed data is 
analysed using machine learning models to classify water 
safety status, enabling timely interventions. Results and 
system statuses are visualised on a web dashboard for 
easy monitoring by operators.

Figure 4 illustrates end-to-end data acquisition, cloud 
inte- gration, machine learning inference, and visualization 
work- flow supporting precision hydroponic management.

Machine Learning Workflow
Preprocessed sensor datasets are divided into training and 
test sets using 5-fold cross-validation to mitigate overfitting. 
Feature engineering includes normalisation and optional 
time- series feature extraction.

 Table I.Sample of the Dataset Collected

Timestamp Temp (°C) pH EC (µS/cm) Status
2025-08-28 

06:05:40 24.06 5.81 1473 Safe

2025-08-28 
06:15:41 24.06 5.74 1341.5 Safe

2025-08-28 
06:25:43 24.12 5.74 1604 Unsafe

2025-08-28 
06:35:44 24.12 5.62 1624 Unsafe

2025-08-28 
06:55:47 24.19 5.76 1715 Unsafe

Classification models employed include Logistic Regres- 
sion, Random Forest, SVM, and XGBoost. Hyperparameter 
tuning is conducted using grid search methods. The best 
per- forming model is serialized for deployment on 
the Raspberry Pi to enable near-real-time water safety 
evaluation.

The system architecture supports scalable extension, in- 
cluding potential integration of additional sensors or control 
elements.

Experimental Protocols
The system was tested with a 7-day indoor lettuce 
cultivation experiment, during which environmental data 
were continuously logged and analysed. Machine learning 
models were retrained daily with newly collected data to 
reflect current conditions.

Model evaluation incorporated standard classification 
metrics such as accuracy, precision, recall, F1-score, and 
confusion matrices, alongside operational reliability checks 
to validate system robustness in practical settings.

 Figure 4.Workflow diagram of the smart 
hydroponic system illustrating data acquisition from 
sensors, local processing, cloud upload for remote 

access, machine learning inference to predict water 
safety, and visualization on a web-based dashboard. 
This sequence enables integrated automation and 

monitoring for optimal plant growth
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Results
The trained machine learning models were evaluated 
using a dataset of accurately labeled water quality 
readings, enabling a thorough assessment of classification 
performance and relia- bility. Five distinct algorithms - 
Logistic Regression, Random Forest, Support Vector 
Machine (SVM), XGBoost, and Tuned Random Forest 
were benchmarked. Table II summarizes their statistical 
evaluation metrics, including accuracy, precision, recall, 
F1 score, and 5-fold cross-validation F1 mean.

 Table 2.Performance Metrics for Sensor-
based Classification Models shows that the 

model correctly identified all instances, with no 
misclassifications in either the Safe or Unsafe 

categories

Model Accu-
racy 

Preci-
sion

Recall 
F1

Score 
CV

F1 
Mean

Logistic 
Regres-

sion
0.8871 0.8903 0.8662 0.8781 0.8816

Random 
Forest 0.9983 1.0000 0.9964 0.9982 0.9989

SVM 0.9686 0.9624 0.9711 0.9667 0.9657
XGBoost 1.0000 1.0000 1.0000 1.0000 0.9984

Tuned 
Random 
Forest

0.9983 1.0000 0.9964 0.9982 0.9987

The exceptionally high performance can be attributed to the 
clear separation between the safe and unsafe classes, the 
stability of sensor data in controlled laboratory conditions, 
and the precise labelling of hydroponic water quality status. 
Additionally, XGBoost’s built-in regularisation mechanisms 
help minimise overfitting to redundant or correlated 
features, which further reinforces its accuracy.10,20 The 
evaluation employed rigorous 5-fold cross-validation to 
avoid training-test leakage.

Nevertheless, perfect accuracy obtained here may not 
fully reflect performance in uncontrolled, real-world 
scenarios, where greater variability, sensor noise, or novel 
data distributions could arise. For reliable generalisation, 
it is recommended to periodically retrain and monitor 
the model with fresh operational data, especially when 
the system is deployed in diverse environments or over 
extended periods.

 Figure 5.Confusion matrix for XGBoost: shows 
perfect sepa- ration of safe and unsafe water status 

predictions, confirming model robustness and 
reliability

Model discrimination capability was further compared using 
ROC curves illustrated in Figure 6, where both XGBoost 
and Random Forest (tuned and default) achieved an Area 
Under the Curve (AUC) of 1.00, indicating optimal sensitivity 
and specificity. Logistic Regression and SVM also Model 
Accuracy Precision Recall F1 Score CV F1 Mean performed 
strongly, with AUC values of 0.90 and 0.99, respectively 
demonstrating that the system consistently identifies water 
safety with high fidelity across algorithm choices.

Prediction using the trained XGBoost model on new, 
unseen sensor data demonstrated its robust generalization 
capability. The model confidently classified the water 
quality status as Safe with a high predicted probability 
of 99.7%, indicating Among these, the XGBoost model 
demonstrated perfect

classification, with accuracy, precision, recall, and F1 scores 
all reaching 1.0, as validated by the full classification report. 
The confusion matrix for XGBoost illustrated in Figure 
5 clearly strong certainty in its predictions. Such high 
confidence scores are critical in real-time applications 
where timely interventions are required to maintain optimal 
hydroponic conditions. The sample predictions, which 
include timestamps, actual waterstatus, predicted status, 
and probability of unsafe conditions, consistently show 
excellent agreement between the model’s output and 
ground truth labels, affirming the model’s accuracy under 
diverse environmental fluctuations.
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Conclusion
The developed smart hydroponic system effectively inte- 
grates precise environmental sensors with advanced 
machine learning models to enable real-time classification of 
nutrient solution safety. By automating water and nutrient 
delivery based on sensor data, the system significantly 
reduces resource waste, promoting sustainable agriculture 
practices that mini- mize ecological impact.

Based on findings reported in similar hydroponic systems, 
the automation of irrigation and nutrient delivery is esti-
mated to reduce water consumption by approximately 
20– 30%, while improving nutrient use efficiency by roughly 
30% through real-time monitoring of electrical conductivity 
(EC) and precise dosing adjustments. These anticipated 
improve- ments highlight the potential of automated smart 
hydroponic frameworks to promote sustainable resource 
management and minimize environmental impacts. 
However, further direct ex- perimental validation within 
our specific system is recom- mended to confirm these 
benefits.

Leveraging IoT-enabled continuous monitoring and data- 
driven model inference, this approach supports smart re- 
source management, maintaining optimal growth conditions 
and improving crop yield quality. The framework’s modular 
design allows scalability and adaptation for varied cultivars 
and farming setups, including urban agriculture and 
controlled- environment horticulture.

The system exemplifies how integrating sensor technology, 
machine learning, and automation can drive sustainable 
farming innovations. It offers pathways to reduce water 
and fertiliser usage, lower operational costs, and build 
resilience against climate variability, thereby contributing 
comprehensively to global sustainability and food security 
goals.

Future research will focus on incorporating additional 
sensing modalities, which means integrating new types 
of sensors such as humidity, light intensity, or spectral 
imaging sensors for disease prediction to gather more 
comprehensive environmental and plant health data. It will 
also involve deploying adaptive learning algorithms that 
can continuously learn and update themselves to cope with 
changing environmental conditions, such as seasonal shifts 
or sensor drift, thus ensuring robust and accurate system 
performance over time. Furthermore, efforts will be made 
to extend remote monitoring capabilities to allow users 
to access real-time system data and control functionalities 
through internet-connected devices, enhancing usability 
and enabling timely interventions even from distant 
locations.

Sample predictions on new sensor data alongside prediction 
probabilities are presented in Table III. These illustrate con- 
sistent and confident classifications aligning well with actual 
water safety conditions, validating model effectiveness in 
live deployment scenarios.

 Figure 6.ROC curve comparison for multiple 
algorithms. XG- Boost and Random Forest (tuned) 
models yielded perfect classification results, while 

all models demonstrated strong predictive ability in 
distinguishing safe and unsafe water states

 Table 3.Sample Predictions with Probability of 
Unsafe Class

Timestamp Actual 
Status

Predicted 
Status

Probability 
Unsafe

2025-08-06 
15:17:27 safe safe 0.000590

2025-08-06 
15:25:32 safe safe 0.000590

2025-08-06 
15:35:32 safe safe 0.001145

2025-08-06 
15:45:33 safe safe 0.000590

2025-08-06 
15:48:38 safe safe 0.000590

2025-08-06 
15:58:39 safe safe 0.000590

2025-08-06 
16:08:40 safe safe 0.000991

2025-08-06 
16:18:41 safe safe 0.001314

2025-08-06 
16:28:41 safe safe 0.001379

2025-08-06 
16:38:42 safe safe 0.001367
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