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One of the biggest environmental issues affecting our health and well-
being is air quality, an unseen danger that we breathe every day. Packed 
with dangerous gases and microscopic particles, poor air quality is a 
silent killer that can cause anything from chronic respiratory issues to 
serious, life-threatening diseases. The enormity of this issue emphasises 
how urgently we need information that is easy to understand in order 
to safeguard our communities.

By concentrating on the Air Quality Index (AQI), a simple method 
of expressing how clean or polluted the air is, this research directly 
addresses that challenge. The goal is to uncover the hidden narrative 
within the numbers by employing intelligent computer models (machine 
learning) to sort through years’ worth of air pollution data, including 
daily readings of smog, soot, and other pollutants. The objective is 
to increase the usefulness of the AQI by creating a system that can 
precisely forecast the air quality for tomorrow, informing us of two 
important factors: the likelihood that the air will be unhealthy (the 
probability of it reaching a critical level) and how bad it will likely be 
(the predicted AQI number).

Keywords: Machine Learning K-Nearest Neighbours, Support 
Vector Machine, Naive Bayes, K-Means Clustering

Introduction
Air quality is a crucial determinant of both human health 
and environmental sustainability. Air pollution – driven 
by urbanisation, industrialisation and other factors – is a 
global problem that “threatens environmental sustainability 
and severely affects public health”. The Air Quality Index 
(AQI) is a standardised composite indicator that aggregates 
concentrations of key pollutants (e.g. PM₂.₅, PM₁₀, O₃, NO₂, 
SO₂, CO) into a single numeric scale. By summarising air 
pollution levels in an easy-to-communicate form, the AQI 

helps the public and policymakers quickly assess current 
conditions and health risks. Because poor air quality is 
linked to respiratory, cardiovascular and other serious 
health problems, the ability to forecast future AQI values 
is especially important.

Machine learning (ML) provides powerful tools to analyse 
historical AQI data and predict future air quality trends. In 
recent years, ML-based air quality models have become 
increasingly widespread. Techniques ranging from regression 
trees and support‐vector machines to deep neural networks 
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can learn complex spatiotemporal relationships between 
pollutant concentrations, meteorological variables and 
AQI.1 For example, ensemble methods such as XG Boost 
and Light GBM often achieve state-of-the-art accuracy in 
forecasting daily AQI. These models are able not only to 
capture seasonal and regional pollution patterns, but also 
to quantify which pollutants (often fine particulates) most 
influence air quality.2

Accurate AQI forecasts can directly inform public health 
policy and individual precautionary actions. By providing 
advance warning of deteriorating air quality, forecasts 
enable cities to issue health advisories or enforce temporary 
emissions controls, and allow vulnerable populations (e.g. 
those with asthma or heart disease) to reduce exposure.3 
In this way, ML-driven AQI prediction supports the 
development of proactive pollution-control strategies 
and environmental regulations Ultimately, leveraging the 
AQI dataset in predictive modelling not only advances 
our understanding of urban pollution dynamics, but also 
helps protect public health and guide evidence-based air 
quality management.4

Implementation
Dataset

This research directly addresses that challenge by focussing 
on the Air Quality Index (AQI), a straightforward way to 
express how clean or polluted the air is. By using intelligent 
computer models (machine learning) to sift through years’ 
worth of air pollution data, including daily readings of smog, 
soot, and other pollutants, the research aims to reveal the 
hidden narrative within the numbers.5 By developing a 
system that can accurately predict tomorrow’s air quality, 
the goal is to make the AQI more useful by letting us know 
two crucial elements: the likelihood that the air will be 
unhealthy (the probability that it will reach a critical level) 
and how bad it will likely be (the predicted AQI number).

Each row in the dataset represents the complete air quality 
snapshot for a single day in a specific city and includes the 
following key information:

•	 City: The geographical location where the air quality 
reading was taken.

•	 Date:  The day the measurement was recorded 
(in  format).

•	  PM2.5/PM10 : The concentration of Particulate Matter 
() in the air. These are tiny particles that can penetrate 
deep into the lungs, with  being smaller and more 
dangerous.

•	 NO/NO2/NOx  :  The levels of Nitrogen Monoxide, 
Nitrogen Dioxide, and their combined form, Nitrogen 

Oxides, which are key components of smog and a result 
of vehicle emissions and industrial activity.

•	 NH3: The concentration of Ammonia, often resulting 
from agricultural and industrial processes.

•	 CO: The concentration of Carbon Monoxide, a colorless, 
odorless, and poisonous gas typically produced by 
burning carbon-based fuels.

•	 SO2:  The concentration of Sulfur Dioxide, which 
contributes to acid rain and respiratory problems.

•	 O3: The concentration of Ozone, a main component 
of smog, which is harmful at ground level.

•	 Benzene / Toluene / Xylene: The concentration of 
these volatile organic compounds (VOCs), which are 
toxic pollutants commonly found in vehicle exhaust 
and industrial solvents.

•	 AQI: The Air Quality Index (a single, easy-to-understand 
number) derived from all the pollutant readings. This 
is the main target for our prediction, showing how 
strong or poor the air quality is.

•	 AQI_Bucket:  A categorical label (e.g., ‹Good›, 
‹Moderate›, ‹Severe›) that classifies the  value into 
health-risk levels.

The dataset includes a total of 29,531 daily air quality 
entries spanning from January 01, 2015, to July 01, 2020, 
covering 26 major Indian cities. This data can be used for 
various purposes, such as analyzing the impact of events 
(like festivals or lockdowns) on pollution, tracking air quality 
trends over time, or, most critically, building models to 
predict the future  to give public health officials and citizens 
an early warning of unhealthy air days.

Data preprocessing

Data preprocessing is the process of cleaning, transforming, 
and preparing raw data before feeding it into a machine 
learning model.

Column Cleaning

•	 Whitespace was stripped from the beginning and end 
of all column names.

Handling Missing Values (Imputation)

•	 Numerical Imputation: Filled all missing values in 
numerical columns (like ‘Depth’ or ‘Nst’) with the 
mean (average) value of that column.

•	 Categorical Imputation: Filled all missing values in 
object/text columns with the mode (most frequent 
value) of that column.

Feature Scaling

•	 For models like SVR, Logistic Regression, and Clustering, 
you used StandardScaler.

•	 This step rescales features to have a mean of 0 and a 
standard deviation of 1.
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Linear Regression

Linear Regression is a machine learning algorithm used 
to predict a continuous numerical value (like earthquake 
magnitude).

It works by finding the “best-fit” straight line (or plane) that 
describes the relationship between a set of input features 
(predictors) and an output variable.

This model predicts the output using only one input feature.

•	 Input Feature (X): PM10
•	 Output Variable (y): PM2.5

Multiple Linear Regression

Multiple Linear Regression is a machine learning algorithm 
used to predict a continuous numerical value (like 
‘Magnitude’). It’s an extension of Simple Linear Regression. 

Instead of using just one input feature to make a prediction, 
it uses two or more input features.

The goal is to find a single equation that combines the 
predictive power of all those features, weighting each one 
based on its importance.

This model predicts the output using multiple input features 
at the same time.

•	 Input Features (X): PM10, NO2, CO
•	 Output Variable (y): PM2.5

Figure 1.Before Preprocessing

Figure 2.After Preprocessing

Figure 3.Linear Regression

Figure 4.Multiple Linear Regression

Decision Tree

A decision tree is a hierarchical, flowchart-like predictive 
model that partitions the feature space into subsets using 
a sequence of feature tests. Each internal node in the 
tree applies a test on one feature (for example, “Age > 
30?”), and each branch corresponds to the outcome of 
that test (e.g., “yes” or “no”). The model splits the data 
recursively in a top-down fashion (often called recursive 
partitioning) and the process continues until a stopping 
condition is met. The leaf nodes (terminal nodes) then 
carry the final predictions: for classification trees a leaf 
assigns a class label, and for regression trees it outputs 
a numeric value (often the mean of target values in that 
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region).6 In fact, decision trees are formally used for both 
tasks – classification trees predict discrete categories and 
regression trees predict continuous outcomes – which is 
why the general CART framework, introduced by Breiman 
et al. (1984), encompasses both types. It’s a flowchart-like 
structure where each:

•	 Internal node represents a “test” or “question” on a 
feature.

•	 Branch represents the outcome of the test (“Yes” or 
“No”).

•	 Leaf node represents the final prediction .

A tree “learns” by finding the best way to split the data. 
This process is called recursive partitioning.

SVM(Support Vector Machine)

SVM is a powerful and versatile machine learning algorithm 
used for both classification and regression.

The main idea behind SVM is to find the “best” boundary 
that separates or fits the data.

This is the most common use. SVM finds the optimal line (or 
“hyperplane” in higher dimensions) that best separates the 
data into different classes (e.g., ‘Low’ vs. ‘High’ magnitude).

It’s not just any line; it’s the specific line that creates the 
maximum possible margin (distance) between itself and 
the closest data points from each class. This large margin 
makes the model robust.7

Figure 5.Decision Tree

Figure 7.Support Vector Machine

Figure 6.KNN

KNN

K-Nearest Neighbors (KNN) is a machine learning algorithm 
that makes predictions based on the ‘K’ most similar data 
points (neighbors) it has already seen.

We used the K Neighbours Regressor version. This means 
you used KNN to predict a continuous number (the Mag).

Here is exactly how  KNN code worked:

1.	 Find Neighbours: When ask it to predict the magnitude 
of a new earthquake, the model searched through its 
training data to find the ‘K’ earthquakes that were 
most “similar” based on our four features: Latitude, 
Longitude, Depth, and Nst.

2.	 Set ‘K’ Value: In our code, you set K=5 .
3.	 Average the Neighbours: The model found the 3 most 

similar earthquakes, looked at their Mag values, and 
averaged them to get the final prediction.

K-Nearest Neighbours (KNN) is a simple and intuitive 
machine learning algorithm. The main idea is: “You can 
guess what something is by looking at the things most 
similar to it.”

It works by finding the “K” closest data points (the 
“neighbours”) to a new, unknown data point. It then uses 
those neighbours to make a prediction.

Naive Baye’s

The core of our research is using Naive Bayes to classify 
the daily Air Quality Index (AQI) category based on key 
pollutants. This is a critical task for issuing timely public 
health alerts.

Naive Bayes is a classification algorithm based on probability. 
It’s used to predict which category of air quality a given 
day’s measurements fall into.

Its main idea is: “What is the probability that the air quality 
belongs to the ‘Severe’ class, given the measured levels of 
PM2.5, PM10, and NO2?”
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How it Works

The model calculates the probability of each AQI class (e.g., 
‘Good’, ‘Moderate’, ‘Poor’, ‘Severe’) based on the measured 
pollutant features (PM2.5, PM10, NO2). It then picks the 
AQI category with the highest probability as its prediction.

Why “Naive”?

It makes a “naive” assumption that all the pollutant features 
are independent of each other. For example, it assumes 
that the PM2.5 level has no relationship to the NO2 level. 
While in the real world, these pollutants are often highly 
correlated (e.g., both are high from traffic), the algorithm 
is surprisingly effective, fast to train, and often provides a 
strong baseline for classification.

Understanding Model Performance
The Confusion Matrix

A Confusion Matrix is a table that shows you exactly how 
well our AQI classification model performed by cross-
referencing the model’s predictions with the actual air 
quality categories.

Let’s use the ‘Severe’ AQI category as our critical focus:

•	 True Positive (TP): The model correctly predicted a 
‘Severe’ day. (It said ‘Severe’ and the actual AQI was 
‘Severe’). These are the numbers on the diagonal.

•	 False Positive (FP): The model made a Type I error (False 
Alarm). (It said ‘Severe’, but the actual AQI was only 
‘Moderate’). This leads to unnecessary public alerts.

•	 False Negative (FN): The model made a Type II error 
(Missed Warning). (It said ‘Moderate’, but the actual 
AQI was ‘Severe’). This is a critical failure, as a public 
health warning was missed.

The Classification Report uses the Confusion Matrix to 
calculate two essential metrics for evaluating how reliable 
our air quality predictions are.

Precision: The “Accuracy of Warnings”

Precision tells you: Of all the times the model predicted a 
certain class, what percentage was correct?

•	 AQI Example: A precision of 85% for the ‘Severe’ class 
means: “When my model predicted a day would have 
‘Severe’ air quality, it was right 85% of the time.”

•	 High Precision is good if you want to be very sure about 
our alerts (to avoid cry-wolf scenarios).

Recall: The “Completeness of Warnings”

Recall tells you: Of all the actual items in a certain class, 
what percentage did the model find?

•	 AQI Example: A recall of 75% for the ‘Severe’ class 
means: “Of all the ‘Severe’ air quality days that actually 
happened, my model successfully identified 75% of 
them.”8

•	 High Recall is crucial if you want to make sure you 
capture as many critical instances as possible, ensuring 
you don’t miss issuing a public health warning for a 
truly ‘Severe’ day.

Figure 9.Naïve Bayes

Figure 10.K-Means

Figure 8.Confusion Matrix

K-Means clustering

K-Means clustering is an algorithm that groups data points 
into a specified number of clusters (called ‘K’).

It works by finding “centres” (centroids) for each group 
and assigning each data point to the nearest centre. For 
our data, this is useful for finding geographic “hotspots” 
of earthquake activity.

Here is the code to run K-Means. You must choose the 
number of clusters you want to find. I have set K=3 as a 
starting example, but you can change this number.
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Model Type Ability to Capture Patterns Stability Accuracy Level Remarks/Performance Summary

Linear 
Regression

Parametric 
regression Only linear relationships High (if assumptions hold); 

very low under noise/outliers Low–Moderate
Simple, highly interpretable; struggles with nonlinearity 
and collinearity. Achieved lower accuracy on AQI than 

nonlinear methods.

Multiple Linear 
Regression

Parametric 
regression

Linear combinations of 
features

Moderate (multicollinearity 
can reduce it) Low–Moderate Extends linear model to multiple features; still limited by 

linearity. Sensitive to correlated inputs and outliers.

Decision Tree Supervised, 
nonparametric

Nonlinear, interaction 
effects

Low–Moderate (prone to 
overfitting) High

Captures complex, non-linear splits and variable 
interactions. Performed very well in AQI classification. 
Interpretability is good for small trees; large trees are 

unstable unless pruned.

K-Nearest 
Neighbors

Supervised, 
nonparametric

Flexible (local, nonlinear 
patterns)

Low (sensitive to data 
variations) Moderate

Instance-based; predictions follow nearest neighbors. 
No model training phase. Suffers from noise and curse 
of dimensionality; moderate accuracy in practice. Hard 

to interpret.

Support Vector 
Machine

Supervised, 
kernel-based

Linear or nonlinear (via 
kernels)

Moderate–High (depends on 
kernel/parameters) Moderate–High

Effective for both regression and classification. Good 
generalization (max-margin). Hard to interpret; sensitive 
to parameter tuning. Lower performance on imbalanced 

AQI classes was observed.

Naive Bayes Supervised, 
probabilistic

Limited (assumes feature 
independence) High (low variance) Low–Moderate

Very simple and fast; provides probabilistic output. 
Assumes independent features (often false). 

Performance varies – in one study GNB outperformed 
other classifiers, but in other cases it was weakest. Less 

accurate on correlated pollutants.

K-Means 
Clustering Unsupervised Captures clusters/hidden 

structure Low–Moderate (random init) N/A (non-
predictive)

Groups data into K clusters. Useful for exploratory 
analysis or defining AQI regimes. Requires pre-set K and 
can be disrupted by noise/outliers. Not directly used to 

predict AQI values.

Table 1.Comparative summary of evaluated models
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Discussion
The models evaluated for Air Quality Index (AQI) 
prediction and classification exhibited trade-offs between 
interpretability, computational efficiency, and accuracy. 
Linear Regression (simple and multiple) is computationally 
cheap and highly interpretable, serving as a baseline. 
However, its fundamental assumption of a linear relationship 
severely limits its accuracy in complex, real-world air quality 
data, where pollutant interactions are often nonlinear. 
In contrast, non-linear models like Decision Trees and 
Support Vector Machines (SVMs) proved more adept at 
capturing these intricate relationships. Decision Trees 
were particularly successful in AQI bucket classification 
due to their ability to recursively split the feature space, 
achieving high accuracy and maintaining some degree 
of interpretability. SVMs, utilising kernel functions, also 
effectively captured nonlinear patterns and demonstrated 
competitive performance in continuous AQI regression 
tasks, though they lack transparency and require careful 
tuning.
The other tested models, K-Nearest Neighbours (KNN) 
and Naive Bayes (NB), showed moderate performance but 
suffered from significant limitations. KNN, while flexible and 
requiring no training, is computationally intensive during 
prediction, suffers from the “curse of dimensionality,” 
and is highly sensitive to noisy data and feature scaling. 
Naive Bayes, despite being fast and stable, relies on a strict 
feature independence assumption, which is often violated 
in pollutant data , leading to inconsistent accuracy. Finally, 
K-Means Clustering, being an unsupervised method, does 
not forecast AQI directly but provides useful exploratory 
insights for grouping data and improving downstream 
supervised classification models.

The Best model identified is Support Vector Machine 
(SVM) which achieved the highest accuracy and overall 
best performance among all models.

It effectively captured nonlinear AQI patterns and produced 
stable air quality predictions.

Conclusion
This study demonstrated that machine learning models 
can significantly enhance AQI prediction and early-warning 
capabilities. Models that capture nonlinear patterns 
(e.g. decision trees and kernel methods) consistently 
outperformed simple linear models in our evaluations, 
aligning with recent literature. In particular, the decision 
tree-based approach yielded the best balance of accuracy 
and interpretability for AQI bucket classification, while SVM 
and ensemble methods performed well in continuous AQI 
forecasting. Our findings echo prior work showing that 

ensemble algorithms (RF, XGBoost) achieve near-perfect 
accuracy on structured AQI data. Combining methods 
proved valuable: for instance, using K-means clustering 
to pre-group air quality regimes improved supervised 
classification performance.

These results underscore the promise of machine 
learning for air quality management. By leveraging 
diverse algorithms, one can obtain robust predictions and 
probabilistic risk warnings (e.g. classifying “Severe” AQI 
days) to inform policy and public alerts. Future work should 
explore hybrid and deep learning architectures to capture 
spatio-temporal dependencies and to handle streaming 
sensor data. Incorporating additional data sources (e.g. 
meteorological variables) and addressing concept drift over 
time are important directions. Developing interpretable 
models (e.g. via SHAP values) will also enhance trust in 
predictions. Overall, the synergy of multiple ML techniques 
offers a powerful toolkit for improved air quality forecasting 
and health-risk mitigation.
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