/IO,

ADVANCED RESEARCH FUBLICATIONS

Journal of Advanced Research in Instrumentation and Control Engineering

Volume 8, Issue 1&2 - 2021, Pg. No. 12-17
Peer Reviewed Journal

Article

Face Recognition Thourgh Simulation

K Thamizhmaran

Assistant Professor, Department of Electronics Communication Engineering , Government College of Engineering, Bodinayakanur,

Tamil Nadu, India.

I NF O

E-mail Id:

tamill0_happy@rediff.com

How to cite this article:

Thamizhmaran K. Face Recognition Thourgh
Simulation. J Adv Res Instru Control Engg 2021;
8(1&2): 12-17.

Date of Submission: 2021-04-03
Date of Acceptance: 2021-04-23

ABSTRACT

The use of machines in society has increased widely in the last decades.
Nowadays, machines are used in many different industries. As their
exposure with humans increase, the interaction also must become
smoother and more natural. To achieve this, machines must be provided
with a capability that let them understand the surrounding environment.
When machines are referred, this term comprises to computers and
robots. A distinction between both is that robots involve interaction
abilities into a more advanced extent since their design involves some
degree of autonomy. When machines can appreciate their surroundings,
some sort of machine perception has been developed. Humans use
their senses to gain insights about their environment. Therefore,
machine perception aims to mimic human senses to interact with
their environment. Nowadays, machines have several ways to capture
their environment state trough cameras and sensors. Hence, using
this information with suitable algorithms allow to generate machine
perception. In the last years, the use of Deep Learning algorithms has
been proven to be phenomenally successful in this regard. For instance,
Jeremy Howard showed on his Brussels 2014 TEDx's talk how computers
trained using deep learning techniques were able to achieve some
amazing tasks. These tasks include the ability to learn Chinese language,
to recognize objects in images and to help on medical diagnosis. Affective
computing claims that emotion detection is necessary for machines to
better serve their purpose. For example, the uses of robots in areas such
as elderly care or as porters in hospitals demand a deep understanding
of the environment. Facial emotions deliver information about the
subject’s inner state. If a machine can obtain a sequence of facial images,
then the use of deep learning techniques would help machines to be
aware of their interlocutor’s mood. In this context, deep learning has
the potential to become a key factor to build better interaction between
humans and machines, while providing machines with self-awareness
about its human peers, and how to improve its communication with
natural intelligence.

Keywords: Image, Network Loss, Face Recognition, Python

Introduction

parameters were chosen because their influence over
the network’s behaviour:

Also, a focus on some parameters and its effect on the
model’s accuracy prediction was performed. These ¢ Networklos

Journal of Advanced Research in Instrumentation and Control Engineering (ISSN: 2456-1398)
Copyright (c) 2021 Advanced Research Publications

Thamizhmaran K
J. Adv. Res. Instru. Control Engg. 2021; 8(1&2)

e Learning rate
e Dropout
e Optimizers

As described by Rosalind Picard, “.. affective computing
is the kind of computing that relates to, arises from, or
influences emotions or other affective phenomena”.
Affective computing aims to include emotions on the design
of technologies since they are an essential part of tasks that
define the human experience: communication, learning,
and decision-making.

AUl AL2 AlU4 AUS Al6
#8 | FA | | BF RS
Tomir¢ brow miser | Ohar b ke Baow Liwwe e Upper Tid rmiser Chowk misar
AUT ALY AUI2 AUIS AUIT
B =i - JIe
Lid tighen Hewe wrinkle Lipcomarpallr | Lip comer depeessoe Chin ralsar
AU23 AUA AU25 AU2Z6 AU27
= e e e
Lip dghen Lip presser Lips part Forw drop Meouth sich

Figure |.Facial action units

One of the main foundations behind affective computing is
that without emotions, humans would not properly function
as rational decision-making beings. Some research show
that there is no such a thing as “pure reason”. Emotions
are involved in decision-making since a fully scientifically
approach would turn into an extreme time-consuming
process, not suitable for daily tasks. Research around
this topic have shown that the brain does not test each
probable option, but it is biased by emotion to quickly
decide. An emotion is defined as a class of qualities that
is intrinsically connected to the motor system. When a
particular emotional state is triggered, the motor system will
provide the corresponding set of instructions to reproduce
the modulations connected to that class. So far, emotions’
importance has been addressed without taking human
interaction into consideration. Empathy is a human capacity
that makes us aware and provides us with understanding
about what other beings might be experiencing from their
current’s position. Moreover, empathy allows us to build
close relationships and strong communities. Therefore, it is
fundamental towards a pro-social behaviour, which includes
social interaction and perception. Thus, it is especially
important for affective computing to develop ways to
accurately measure these modulations since they can
lead to a better understanding of a subject’s emotional
state. The two main ways to do so is by detecting facial
and vocal emotions.

Facial Emotion Recognition

The work by psychologist Paul Ekman has become
fundamental to the development of this area. Nowadays,
most of the face emotion recognition studies are based on
Ekman’s Facial Action Coding System. This system provides
a mapping between facial muscles and an emotion space.
The main purpose behind this system is to classify human
facial movements based on their facial appearance. This
classification was first developed by Carl-Herman Hjorth,
who is a Swedish anatomist. However, this mapping might
face some challenges. For instance, gestures involved on
facial emotions can be faked by actors. The absence of a real
motivation behind the emotion does not prevent humans
to fake it. For instance, an experiment describes when a
patient, who is half paralyzed is asked to smile. When it is
asked, only a side of the mouth rises. However, when the
patient is exposed to a joke, both sides of the mouth raise.
Hence, different paths to transmit an emotion depend on
the origin and nature of a particular emotion. With respect
to computers, many possibilities arise to provide them with
capabilities to express and recognize emotions. Nowadays,
it is possible to mimic Ekman’s facial units. This will provide
computer with graphical faces that provide a more natural
interaction. When it comes to recognition, computers have
been able to recognize some facial categories: happiness,
surprise, anger and disgust.

Convolution Neural Networks

The study of the visual cortex is closely related to the
development of the convolution neural networks. Back in
1968, Hubel and Wiesel presented a study focused on the
receptive fields of the monkey’s visual cortex. This study
was relevant because of the striate cortex (primary visual
cortex) architecture description and the way that cells are
arranged on it.

ERROR = E
INPUT = X
WEIGHTS = W
FUNCTION INPUT =Y
step0: FUNCTION OUTPUT = Z
FORWARD: X — XW =Y = o(Y) = Z

Zi 1 =Xy Zi = Xt41

Step 2:
FROM ERRORS TO GRADIENTS:
OB
——7Z+ JE,
oW, e

Step 1:
Ei_1 < o/(Yi_1) «— E¢WT « E :BACKWARD

Figure 2.Convolutions Neural Network

ISSN: 2456-1398

Thamizhmaran K
J. Adv. Res. Instru. Control Engg. 2021; 8(1&2)

N mathematics, a convolution operation is defined to mix
two functions. An analogy commonly used is that this
operation works as a filter. A kernel filters everything that is
not important for the feature map, only focusing on some
specific information.

To Execute this Operation, Two Elements are Needed:

e Theinput data
e The convolution filter (kernel)

Input image Convolution Feature map
Kemel I
-1 -1 -1
-1 8 -1
-1 -1 -1

Figure 4.Convolution operation

The result of this operation is a feature map. Figure 3
provides a graphical explanation about the mechanics
on the convolutional operation. The number of feature
maps (output channels) provides the neural network with
a capacity to learn features. Each channel is independent
since they aim to learn each a new feature from the image
that is being convoluted. Finally, the type of padding defines
the algorithm to be used when performing the convolution.
There is a special case on the input’s edges. One type of
padding will discard input’s border, since there is no more
input next to it that can be scanned. On the other hand,
the other padding will complete the input with a value of
0. It is a matter of reducing parameters while convoluting.

2 Spatial sub-sampling

Spatial sub-sampling is an operation also known as pooling.
The operation consists of reducing the values of a given area
to one. So, it reduces the influence of the feature position
on the 4. Figure -Image sequence for subject S130 from
CK+. Subject displays the surprise emotion.

Figure 4.Image sequence for subject S130 from CK+

Feature map by diminishing its spatial resolution. This
is done by choosing the most responsive pixel after a
convolution operation. There are two types of polling:
average and maximum. The average one computes the
mean on the defined area, while the maximum only selects

ISSN: 2456-1398

the highest value on the area. The area size can lead to
reduction on the prediction performance, if the value is
too large. It proceeds in a similar fashion.

Implementation Framework

Nowadays, many frameworks have been developed for deep
learning. Some of the most popular ones include libraries
such as: Caffe, Theano and Tensor Flow. Also, implementing
a framework from scratch using a programming language
was never considered. It would have been out of scope
since it requires a big amount of effort, and the duration of
such a project usually takes years. The use of Python as the
front-end API on all these frameworks shows that it is the
preferred language for machine learning. Usually, Python
is combined with a programming language that provides
support for low level operations such as: C or C++, to act
on the back end.

Layer’s Specification

The convolutional layer contains the following hyper
parameter set; there is no rule of thumb to determine
values for these parameters. Most of the time they are
tuned by trial and error:

e Number of output channels

e Size of the kernel’s receptive field
e Shape of the kernel’s stride

e Type of padding operation

Program
import glob
from shutil import copyfile

emotions = [“neutral”,”angry”,”contempt”,”disgust”,”
”nn ”n”n

fear””happy”,’surprise”,’sadness”]
participants=glob.glob(“source emotion*”)
for x in participants:

part="%s" %x[-4:]

for sessions in glob.glob(“%s*”%x):

for files in glob.glob(“%s*”%sessions):
current_session=files[20:-30]
file=open(files,’r’)
emotion=int(float(file.readline ()))

sourcefile_emotion=glob.glob(“source_im-
age\\%s\\%s*”%(part,current_session))[-1]

sourcefile_neutral=glob.glob(“source_im-
age\\%s\\%s*”%(part,current_sesssion))[0]

dest_neut="sorted_set\\neutral\\%s"”%sourcefile_neu-
tral[25:]

dest_emot="sorted_set\\%s\\5s”%(emotion[emotion],-

Thamizhmaran K
J. Adv. Res. Instru. Control Engg. 2021; 8(1&2)

sourcefile_emotion[25:])
copyfile(sourcefile_neutral,dest_neut)
copyfile(sourcefile_emotion,dest_emot)
import cv2

import glob

faceDet = cv2.CascadeClassifier(“haarcascade_frontal-
face_default.xml”)

faceDet_two = cv2.CascadeClassifier(“haarcascade_fron-
talface_alt2.xml”)

faceDet_three = cv2.CascadeClassifier(“haarcascade_fron-
talface_alt.xml”)

faceDet_four = cv2.CascadeClassifier(“haarcascade_fron-
talface_alt_tree.xml”)

” o«

emotions = [“neutral”, “anger”, “contempt”, “disgust”,

“fear”, “happy”, “sadness”, “surprise”]
def detect_faces(emotion):

files = glob.glob(“sorted_set\\%s*” %emotion) #Get list
of all images with emotion

filenumber =0
for f in files:
frame = cv2.imread(f) #Open image

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #Convert
image to grayscale

#Detect face using 4 different classifiers

face = faceDet.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=10, minSize=(5, 5), flags=cv2.CASCADE_
SCALE_IMAGE)

face_two = faceDet_two.detectMultiScale(gray, scaleFac-
tor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.CAS-
CADE_SCALE_IMAGE)

face_three = faceDet_three.detectMultiScale(gray, scale-
Factor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.
CASCADE_SCALE_IMAGE)

face_four = faceDet_four.detectMultiScale(gray, scale-
Factor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.
CASCADE_SCALE_IMAGE)

#Go over detected faces, stop at first detected face, return
empty if no face.

if len(face) == 1:
facefeatures = face

elif len(face_two) == 1:
facefeatures = face_two

elif len(face_three) ==

facefeatures = face_three
elif len(face_four) == 1:
facefeatures = face_four
else:
facefeatures = “”
#Cut and save face

for (x, y, w, h) in facefeatures: #get coordinates and size of
rectangle containing face

print (“face found in file: %s” %f)
gray = gray[y:y+h, x:xx+w] #Cut the frame to size
try:

out = cv2.resize(gray, (350, 350)) #Resize face so all images
have same size

cv2.imwrite (“C:\\Users\\admin\\Desktop\\face.jpg”
%(emotion, filenumber), out) #Write image

except:

pass #If error, pass file

filenumber += 1 #Increment image number
for emotion in emotions:
detect_faces(emotion) #Call functiona
import cv2

import glob

import random

import numpy as np

» u

emotions = [“neutral”, “anger”, “contempt”, “disgust”,

“fear”, “happy”, “ surprise”] #Emotion list

n o«

sadness”,

fishface = cv2.createFisherFaceRecognizer() #Initialize fisher
face classifier

data ={}

def get_files(emotion): #Define function to get file list,
randomly shuffle it and split 80/20

files = glob.glob(“C:\\Users\\admin\\Desktop\\face.jpg”
%emotion)

random.shuffle(files)

training = files[:int(len(files)*0.8)] #get first 80% of file list
prediction = files[-int(len(files)*0.2):] #get last 20% of file list
return training, prediction

def make_sets():

training_data =]

training_labels =[]

ISSN: 2456-1398

Thamizhmaran K
J. Adv. Res. Instru. Control Engg. 2021; 8(1&2)

prediction_data =[]

prediction_labels =[]

for emotion in emotions:

training, prediction = get_files(emotion)

#Append data to training and prediction list, and generate
labels 0-7

for item in training:
image = cv2.imread(item) #open image

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #con-
vert to grayscale

training_data.append(gray) #append image array to train-
ing data list

training_labels.append(emotions.index(emotion))

for item in prediction: #repeat above process for predic-
tion set

image = cv2.imread(item)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
prediction_data.append(gray)
prediction_labels.append(emotions.index(emotion))

return training_data, training_labels, prediction_data,
prediction_labels

def run_recognizer():

training_data, training_labels, prediction_data, predic-
tion_labels = make_sets()

print (“training fisher face classifier”)

print (“size of training set is:”, len(training_labels), “images”)
fishface.train(training_data, np.asarray(training_labels))
print (“predicting classification set”)

cnt=0

correct=0

incorrect =0

for image in prediction_data:

pred, conf = fishface.predict(image)

if pred == prediction_labels[cnt]:

correct += 1

cnt+=1

else:

incorrect +=1

cnt+=1

return ((100*correct)/(correct + incorrect))

ISSN: 2456-1398

#Now run it

metascore = []

foriin range(0,10):

correct = run_recognizer()

print (“got”, correct, “percent correct!”)
metascore.append(correct)

print (“\n\nend score:”, np.mean(metascore), “percent
correct!”)

#Change from:

n o«

emotions = [“neutral”, “anger”, “contempt”, “disgust”,

“fear”, “happy”, “ surprise”]

#To:

” o«

sadness”,

» u

emotions = [“neutral”, “anger”, “disgust”, “happy”,
prise”]

sur-

def run_recognizer():

training_data, training_labels, prediction_data, predic-
tion_labels = make_sets()

print (“training fisher face classifier”)

print (“size of training setis:”, len(training_labels), “images”)
fishface.train(training_data, np.asarray(training_labels))
print (“predicting classification set”)

cnt=0

correct =0

incorrect =0

for image in prediction_data:

pred, conf = fishface.predict(image)

if pred == prediction_labels[cnt]:

correct +=1

cnt+=1

else:

cv2.imwrite(“C:\\Users\\admin\\Desktop\\face.jp-
g"%(emotions[prediction_labels[cnt]], emotions[pred],
cnt), image) #<-- this one is new

incorrect += 1

cnt+=1

return ((100*correct)/(correct + incorrect))
Conclusion

In this project, a research to classify facial emotions over
static facial images using deep learning techniques was
developed. This is a complex problem that has already been
approached several times with different techniques. While

Thamizhmaran K
J. Adv. Res. Instru. Control Engg. 2021; 8(1&2)

good results have been achieved using feature engineering,
this project focused on feature learning, which is one of
DL promises. While the results achieved were not state-
of-the-art, they were slightly better than other techniques
including feature engineering. It means that eventually
DL techniques will be able to solve this problem given
an enough amount of labeled examples. While feature
engineering is not necessary, image pre-processing boosts
classification accuracy. Hence, it reduces noise on the
input data. Nowadays, facial emotion detection software
includes the use of feature engineering. A solution totally
based on feature learning does not seem close yet because
of a major limitation: the lack of an extensive dataset of
emotions. For instance, ImageNet contest uses a dataset
containing 14 197 122 images. By having a larger dataset,
networks with a larger capability to learn features could
be implemented. Further improvement on the network’s
accuracy and generalization can be achieved through
the following practices. The first one is to use the whole
dataset during the optimization. Using batch optimization
is more suitable for larger datasets. Another technique is
to evaluate emotions one by one. This can lead to detect
which emotions are more difficult to classify. Finally, using
a larger dataset for training seems beneficial. Nowadays,
optimizers work on a stochastic basis because of large
datasets (millions of examples). However, this was true for
our project. Given a limited dataset, trying on the whole
dataset could have led to a better feature learning. Also,
the use of some optimizers reported on this research
would have had a different behaviour. This behaviour
can be displayed on the loss curve having a smoother
shape or by avoiding an early convergence. Second, due
to time constraints, it was not possible to evaluate each
emotion. On this way, it would have been possible to
detect which emotions are easier to classify, as well as
which ones are more difficult. Moreover, pre-training on
each emotion could lead to a better feature learning.
After that, the network could have received this learning
(transfer learning). This could have improved on reducing
the training time; as well as, minimizing to a higher degree
the cost function. Also, using a larger dataset can lead to
higher scale training. Training into a larger input space and
for more time improves the network accuracy. A larger
training scale allows the network to learn more relevant
features. If this is not achieved, feature engineering is still
required for this task. However, such a dataset might not
exist nowadays. Using several datasets might be a solution,
but a careful procedure to normalize them is required.

References

1. BerrettiS et al. Superfaces: A super resolution model
for 3d faces. In ECCV Workshops. 2012; 73-82.

2. Bettadapura V. Face expression recognition and
analysis: the state of the art. arXiv preprint arXi. 2012.

10.

11.

12.

Cui X et al. Data augmentation for deep neural network
acoustic modelling. IEEE/ACM Trans. Audio, Speech
and Lang. 2012; 23(9): 1469-1477.

Dhall A et al. Emotion recognition in the wild challenge.
In Proceedings of the 16' International Conference on
Multimodal Interaction. 2014; 461-466.

Hinton G et al. Deep neural networks for acoustic
modelling in speech recognition”, The shared views
of four research groups. Signal Processing Magazine,
IEEE 2012; 29(6): 82-97.

Gorbenko A, Popov V. On face detection from
compressed video streams. Applied Mathematical
Sciences 2012; 6(96): 4763-4766.

Hinton GE et al. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv
preprint. 2012.

Hoai M. Regularized max pooling for image cate-
gorization. In BMVC 2014; 2: 6.

Howard AG. Some improvements on deep convolutional
neural network-based image classification. arXiv. 2013.
Sutskever | et al. Sequence to sequence learning with
neural networks. In Advances in Neural Information
Processing Systems 2014; 3104-3112.

Jia Y et al. Caffe: Convolution architecture for fast
feature embedding. arXiv preprint arXiv. 2014.

Kim Y et al. Deep learning for robust feature generation
in audio-visual emotion recognition. IEEE International
Conference on Acoustics, Speech and Signal Processing.
2013; 3687-3691.

ISSN: 2456-1398

