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I N F O A B S T R A C T

The use of machines in society has increased widely in the last decades. 
Nowadays, machines are used in many different industries. As their 
exposure with humans increase, the interaction also must become 
smoother and more natural. To achieve this, machines must be provided 
with a capability that let them understand the surrounding environment. 
When machines are referred, this term comprises to computers and 
robots. A distinction between both is that robots involve interaction 
abilities into a more advanced extent since their design involves some 
degree of autonomy. When machines can appreciate their surroundings, 
some sort of machine perception has been developed. Humans use 
their senses to gain insights about their environment. Therefore, 
machine perception aims to mimic human senses to interact with 
their environment. Nowadays, machines have several ways to capture 
their environment state trough cameras and sensors. Hence, using 
this information with suitable algorithms allow to generate machine 
perception. In the last years, the use of Deep Learning algorithms has 
been proven to be phenomenally successful in this regard. For instance, 
Jeremy Howard showed on his Brussels 2014 TEDx’s talk how computers 
trained using deep learning techniques were able to achieve some 
amazing tasks. These tasks include the ability to learn Chinese language, 
to recognize objects in images and to help on medical diagnosis. Affective 
computing claims that emotion detection is necessary for machines to 
better serve their purpose. For example, the uses of robots in areas such 
as elderly care or as porters in hospitals demand a deep understanding 
of the environment. Facial emotions deliver information about the 
subject’s inner state. If a machine can obtain a sequence of facial images, 
then the use of deep learning techniques would help machines to be 
aware of their interlocutor’s mood. In this context, deep learning has 
the potential to become a key factor to build better interaction between 
humans and machines, while providing machines with self-awareness 
about its human peers, and how to improve its communication with 
natural intelligence.
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Introduction
Also, a focus on some parameters and its effect on the 
model’s accuracy prediction was performed. These 

parameters were chosen because their influence over 
the network’s behaviour:

•	 Network los
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Figure 1.Facial action units

Figure 2.Convolutions Neural Network

•	 Learning rate
•	 Dropout
•	 Optimizers

As described by Rosalind Picard, “... affective computing 
is the kind of computing that relates to, arises from, or 
influences emotions or other affective phenomena”. 
Affective computing aims to include emotions on the design 
of technologies since they are an essential part of tasks that 
define the human experience: communication, learning, 
and decision-making.

Facial Emotion Recognition
The work by psychologist Paul Ekman has become 
fundamental to the development of this area. Nowadays, 
most of the face emotion recognition studies are based on 
Ekman’s Facial Action Coding System. This system provides 
a mapping between facial muscles and an emotion space. 
The main purpose behind this system is to classify human 
facial movements based on their facial appearance. This 
classification was first developed by Carl-Herman Hjorth, 
who is a Swedish anatomist. However, this mapping might 
face some challenges. For instance, gestures involved on 
facial emotions can be faked by actors. The absence of a real 
motivation behind the emotion does not prevent humans 
to fake it. For instance, an experiment describes when a 
patient, who is half paralyzed is asked to smile. When it is 
asked, only a side of the mouth rises. However, when the 
patient is exposed to a joke, both sides of the mouth raise. 
Hence, different paths to transmit an emotion depend on 
the origin and nature of a particular emotion. With respect 
to computers, many possibilities arise to provide them with 
capabilities to express and recognize emotions. Nowadays, 
it is possible to mimic Ekman’s facial units. This will provide 
computer with graphical faces that provide a more natural 
interaction. When it comes to recognition, computers have 
been able to recognize some facial categories: happiness, 
surprise, anger and disgust.

Convolution Neural Networks
The study of the visual cortex is closely related to the 
development of the convolution neural networks. Back in 
1968, Hubel and Wiesel presented a study focused on the 
receptive fields of the monkey’s visual cortex. This study 
was relevant because of the striate cortex (primary visual 
cortex) architecture description and the way that cells are 
arranged on it.

One of the main foundations behind affective computing is 
that without emotions, humans would not properly function 
as rational decision-making beings. Some research show 
that there is no such a thing as “pure reason”. Emotions 
are involved in decision-making since a fully scientifically 
approach would turn into an extreme time-consuming 
process, not suitable for daily tasks. Research around 
this topic have shown that the brain does not test each 
probable option, but it is biased by emotion to quickly 
decide. An emotion is defined as a class of qualities that 
is intrinsically connected to the motor system. When a 
particular emotional state is triggered, the motor system will 
provide the corresponding set of instructions to reproduce 
the modulations connected to that class. So far, emotions’ 
importance has been addressed without taking human 
interaction into consideration. Empathy is a human capacity 
that makes us aware and provides us with understanding 
about what other beings might be experiencing from their 
current’s position. Moreover, empathy allows us to build 
close relationships and strong communities. Therefore, it is 
fundamental towards a pro-social behaviour, which includes 
social interaction and perception. Thus, it is especially 
important for affective computing to develop ways to 
accurately measure these modulations since they can 
lead to a better understanding of a subject’s emotional 
state. The two main ways to do so is by detecting facial 
and vocal emotions.
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Figure 4.Image sequence for subject S130 from CK+

Figure 4.Convolution operation

N mathematics, a convolution operation is defined to mix 
two functions. An analogy commonly used is that this 
operation works as a filter. A kernel filters everything that is 
not important for the feature map, only focusing on some 
specific information.

To Execute this Operation, Two Elements are Needed:

•	 The input data
•	 The convolution filter (kernel)

The result of this operation is a feature map. Figure 3 
provides a graphical explanation about the mechanics 
on the convolutional operation. The number of feature 
maps (output channels) provides the neural network with 
a capacity to learn features. Each channel is independent 
since they aim to learn each a new feature from the image 
that is being convoluted. Finally, the type of padding defines 
the algorithm to be used when performing the convolution. 
There is a special case on the input’s edges. One type of 
padding will discard input’s border, since there is no more 
input next to it that can be scanned. On the other hand, 
the other padding will complete the input with a value of 
0. It is a matter of reducing parameters while convoluting.

2 Spatial sub-sampling
Spatial sub-sampling is an operation also known as pooling. 
The operation consists of reducing the values of a given area 
to one. So, it reduces the influence of the feature position 
on the 4. Figure -Image sequence for subject S130 from 
CK+. Subject displays the surprise emotion.

Feature map by diminishing its spatial resolution. This 
is done by choosing the most responsive pixel after a 
convolution operation. There are two types of polling: 
average and maximum. The average one computes the 
mean on the defined area, while the maximum only selects 

the highest value on the area. The area size can lead to 
reduction on the prediction performance, if the value is 
too large. It proceeds in a similar fashion.

Implementation Framework
Nowadays, many frameworks have been developed for deep 
learning. Some of the most popular ones include libraries 
such as: Caffe, Theano and Tensor Flow. Also, implementing 
a framework from scratch using a programming language 
was never considered. It would have been out of scope 
since it requires a big amount of effort, and the duration of 
such a project usually takes years. The use of Python as the 
front-end API on all these frameworks shows that it is the 
preferred language for machine learning. Usually, Python 
is combined with a programming language that provides 
support for low level operations such as: C or C++, to act 
on the back end.

Layer’s Specification
The convolutional layer contains the following hyper 
parameter set; there is no rule of thumb to determine 
values for these parameters. Most of the time they are 
tuned by trial and error:

•	 Number of output channels
•	 Size of the kernel’s receptive field
•	 Shape of the kernel’s stride
•	 Type of padding operation

Program
import glob

from shutil import copyfile

emotions = [“neutral”,”angry”,”contempt”,”disgust”,” 
fear”,”happy”,”surprise”,”sadness”]

participants=glob.glob(“source emotion*”)

for x in participants:

part=”%s” %x[-4:]

for sessions in glob.glob(“%s\\*”%x):

for files in glob.glob(“%s\\*”%sessions):

current_session=files[20:-30]

file=open(files,’r’)

emotion=int(float(file.readline ()))

s o u r c e f i l e _ e m o t i o n = g l o b . g l o b ( “s o u r c e _ i m -
age\\%s\\%s\\*”%(part,current_session))[-1]

s o u r c e f i l e _ n e u t r a l = g l o b . g l o b ( “ s o u r c e _ i m -
age\\%s\\%s\\*”%(part,current_sesssion))[0]

dest_neut=”sorted_set\\neutral\\%s”%sourcefile_neu-
tral[25:]

dest_emot=”sorted_set\\%s\\5s”%(emotion[emotion],-
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sourcefile_emotion[25:])

copyfile(sourcefile_neutral,dest_neut)

copyfile(sourcefile_emotion,dest_emot)

import cv2

import glob

faceDet = cv2.CascadeClassifier(“haarcascade_frontal-
face_default.xml”)

faceDet_two = cv2.CascadeClassifier(“haarcascade_fron-
talface_alt2.xml”)

faceDet_three = cv2.CascadeClassifier(“haarcascade_fron-
talface_alt.xml”)

faceDet_four = cv2.CascadeClassifier(“haarcascade_fron-
talface_alt_tree.xml”)

emotions = [“neutral”, “anger”, “contempt”, “disgust”, 
“fear”, “happy”, “sadness”, “surprise”] 

def detect_faces(emotion):

files = glob.glob(“sorted_set\\%s\\*” %emotion) #Get list 
of all images with emotion

filenumber = 0

for f in files:

frame = cv2.imread(f) #Open image

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #Convert 
image to grayscale

#Detect face using 4 different classifiers

face = faceDet.detectMultiScale(gray, scaleFactor=1.1, 
minNeighbors=10, minSize=(5, 5), flags=cv2.CASCADE_
SCALE_IMAGE)

face_two = faceDet_two.detectMultiScale(gray, scaleFac-
tor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.CAS-
CADE_SCALE_IMAGE)

face_three = faceDet_three.detectMultiScale(gray, scale-
Factor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.
CASCADE_SCALE_IMAGE)

face_four = faceDet_four.detectMultiScale(gray, scale-
Factor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.
CASCADE_SCALE_IMAGE)

#Go over detected faces, stop at first detected face, return 
empty if no face.

if len(face) == 1:

facefeatures = face

elif len(face_two) == 1:

facefeatures = face_two

elif len(face_three) == 1:

facefeatures = face_three

elif len(face_four) == 1:

facefeatures = face_four

else:

facefeatures = “”

#Cut and save face

for (x, y, w, h) in facefeatures: #get coordinates and size of 
rectangle containing face

print (“face found in file: %s” %f)

gray = gray[y:y+h, x:x+w] #Cut the frame to size

try:

out = cv2.resize(gray, (350, 350)) #Resize face so all images 
have same size

cv2.imwrite (“C:\\Users\\admin\\Desktop\\face.jpg” 
%(emotion, filenumber), out) #Write image

except:

pass #If error, pass file

filenumber += 1 #Increment image number

for emotion in emotions:

detect_faces(emotion) #Call functiona

import cv2

import glob

import random

import numpy as np

emotions = [“neutral”, “anger”, “contempt”, “disgust”, 
“fear”, “happy”, “sadness”, “surprise”] #Emotion list

fishface = cv2.createFisherFaceRecognizer() #Initialize fisher 
face classifier

data = {}

def get_files(emotion): #Define function to get file list, 
randomly shuffle it and split 80/20

files = glob.glob(“C:\\Users\\admin\\Desktop\\face.jpg” 
%emotion)

random.shuffle(files)

training = files[:int(len(files)*0.8)] #get first 80% of file list

prediction = files[-int(len(files)*0.2):] #get last 20% of file list

return training, prediction

def make_sets():

training_data = []

training_labels = []
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prediction_data = []

prediction_labels = []

for emotion in emotions:

training, prediction = get_files(emotion)

#Append data to training and prediction list, and generate 
labels 0-7

for item in training:

image = cv2.imread(item) #open image

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #con-
vert to grayscale

training_data.append(gray) #append image array to train-
ing data list

training_labels.append(emotions.index(emotion))

for item in prediction: #repeat above process for predic-
tion set

image = cv2.imread(item)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

prediction_data.append(gray)

prediction_labels.append(emotions.index(emotion))

return training_data, training_labels, prediction_data, 
prediction_labels

def run_recognizer():

training_data, training_labels, prediction_data, predic-
tion_labels = make_sets()

print (“training fisher face classifier”)

print (“size of training set is:”, len(training_labels), “images”)

fishface.train(training_data, np.asarray(training_labels))

print (“predicting classification set”)

cnt = 0

correct = 0

incorrect = 0

for image in prediction_data:

pred, conf = fishface.predict(image)

if pred == prediction_labels[cnt]:

correct += 1

cnt += 1

else:

incorrect += 1

cnt += 1

return ((100*correct)/(correct + incorrect))

#Now run it

metascore = []

for i in range(0,10):

correct = run_recognizer()

print (“got”, correct, “percent correct!”)

metascore.append(correct)

print (“\n\nend score:”, np.mean(metascore), “percent 
correct!”)

#Change from:

emotions = [“neutral”, “anger”, “contempt”, “disgust”, 
“fear”, “happy”, “sadness”, “surprise”]

#To:

emotions = [“neutral”, “anger”, “disgust”, “happy”, “sur-
prise”]

def run_recognizer():

training_data, training_labels, prediction_data, predic-
tion_labels = make_sets()

print (“training fisher face classifier”)

print (“size of training set is:”, len(training_labels), “images”)

fishface.train(training_data, np.asarray(training_labels))

print (“predicting classification set”)

 cnt = 0

correct = 0

incorrect = 0

for image in prediction_data:

pred, conf = fishface.predict(image)

if pred == prediction_labels[cnt]:

correct += 1

cnt += 1

else:

cv2.imwrite(“C:\\Users\\admin\\Desktop\\face.jp-
g”%(emotions[prediction_labels[cnt]], emotions[pred], 
cnt), image) #<-- this one is new

 incorrect += 1

cnt += 1

return ((100*correct)/(correct + incorrect))

Conclusion
In this project, a research to classify facial emotions over 
static facial images using deep learning techniques was 
developed. This is a complex problem that has already been 
approached several times with different techniques. While 
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good results have been achieved using feature engineering, 
this project focused on feature learning, which is one of 
DL promises. While the results achieved were not state-
of-the-art, they were slightly better than other techniques 
including feature engineering. It means that eventually 
DL techniques will be able to solve this problem given 
an enough amount of labeled examples. While feature 
engineering is not necessary, image pre-processing boosts 
classification accuracy. Hence, it reduces noise on the 
input data. Nowadays, facial emotion detection software 
includes the use of feature engineering. A solution totally 
based on feature learning does not seem close yet because 
of a major limitation: the lack of an extensive dataset of 
emotions. For instance, ImageNet contest uses a dataset 
containing 14 197 122 images. By having a larger dataset, 
networks with a larger capability to learn features could 
be implemented. Further improvement on the network’s 
accuracy and generalization can be achieved through 
the following practices. The first one is to use the whole 
dataset during the optimization. Using batch optimization 
is more suitable for larger datasets. Another technique is 
to evaluate emotions one by one. This can lead to detect 
which emotions are more difficult to classify. Finally, using 
a larger dataset for training seems beneficial. Nowadays, 
optimizers work on a stochastic basis because of large 
datasets (millions of examples). However, this was true for 
our project. Given a limited dataset, trying on the whole 
dataset could have led to a better feature learning. Also, 
the use of some optimizers reported on this research 
would have had a different behaviour. This behaviour 
can be displayed on the loss curve having a smoother 
shape or by avoiding an early convergence. Second, due 
to time constraints, it was not possible to evaluate each 
emotion. On this way, it would have been possible to 
detect which emotions are easier to classify, as well as 
which ones are more difficult. Moreover, pre-training on 
each emotion could lead to a better feature learning. 
After that, the network could have received this learning 
(transfer learning). This could have improved on reducing 
the training time; as well as, minimizing to a higher degree 
the cost function. Also, using a larger dataset can lead to 
higher scale training. Training into a larger input space and 
for more time improves the network accuracy. A larger 
training scale allows the network to learn more relevant 
features. If this is not achieved, feature engineering is still 
required for this task. However, such a dataset might not 
exist nowadays. Using several datasets might be a solution, 
but a careful procedure to normalize them is required.

References
1.	 Berretti S et al. Superfaces: A super resolution model 

for 3d faces. In ECCV Workshops. 2012; 73-82.
2.	 Bettadapura V. Face expression recognition and 

analysis: the state of the art. arXiv preprint arXi. 2012.

3.	 Cui X et al. Data augmentation for deep neural network 
acoustic modelling. IEEE/ACM Trans. Audio, Speech 
and Lang. 2012; 23(9): 1469-1477.

4.	 Dhall A et al. Emotion recognition in the wild challenge. 
In Proceedings of the 16th International Conference on 
Multimodal Interaction. 2014; 461-466.

5.	 Hinton G et al. Deep neural networks for acoustic 
modelling in speech recognition”, The shared views 
of four research groups. Signal Processing Magazine, 
IEEE 2012; 29(6): 82-97.

6.	 Gorbenko A, Popov V. On face detection from 
compressed video streams. Applied Mathematical 
Sciences 2012; 6(96): 4763-4766.

7.	 Hinton GE et al. Improving neural networks by 
preventing co-adaptation of feature detectors. arXiv 
preprint. 2012.

8.	 Hoai M. Regularized max pooling for image cate-
gorization. In BMVC 2014; 2: 6.

9.	 Howard AG. Some improvements on deep convolutional 
neural network-based image classification. arXiv. 2013.

10.	 Sutskever I et al. Sequence to sequence learning with 
neural networks. In Advances in Neural Information 
Processing Systems 2014; 3104-3112.

11.	 Jia Y et al. Caffe: Convolution architecture for fast 
feature embedding. arXiv preprint arXiv. 2014.

12.	 Kim Y et al. Deep learning for robust feature generation 
in audio-visual emotion recognition. IEEE International 
Conference on Acoustics, Speech and Signal Processing. 
2013; 3687-3691.


