

Article

Review on E-Waste Management with Special Reference to Benefits of E-Waste Recycling for India

Aniket Kisan Yadav

Research Scholar, MCA, Thakur Institute of Management Studies, Career Development and Research (TIMSCDR), Mumbai, India.

INFO

E-mail Id:

aniket160997@gmail.com

How to cite this article:

Yadav AK. Review on E-Waste Management with Special Reference to Benefits of E-Waste Recycling for India. *J Adv Res Instru Control Engg* 2021; 8(1&2): 18-21.

Date of Submission: 2021-04-14

Date of Acceptance: 2021-05-11

ABSTRACT

Electronic waste or E-squander contains old, finish of-life electronic machines like PCs, workstations, TVs, DVD players, fridges, coolers, cell phones, MP3 players, and so forth, which have been discarded by their unique clients. E-squander contains numerous perilous constituents that may contrarily affect the climate and influence human wellbeing if not appropriately oversaw. Different associations, bodies, and administrations of numerous nations have received and additionally built up the ecologically stable choices and systems for E-squander the board to handle the consistently developing danger of E-waste to the climate and human wellbeing. This paper presents E-squander organization, arrangement, Global and Indian E-squander situations, possibilities of recoverable, recyclable, and perilous materials found in the E-squander, Best Available Practices, reusing, and recuperation measures followed, and their natural and word related dangers. Considering the conversation, different difficulties for E-squander the executives especially in India are portrayed and required arrangement intercessions were examined.

Keywords: E-Waste, E-Waste Management, E-Waste Recycling

Introduction

Electronics industry is the world's biggest and quickest developing assembling industry. Quick development joined with quick item oldness brought about disposed of hardware which is presently the quickest developing waste stream in the industrialized world. The developing amount of E-squander from electronic industry is starting to arrive at sad extents. Electronic Waste or E-squander is the term used to portray old, finish of-life electronic apparatuses like PCs, workstations, TVs, DVD players, fridges and coolers, versatile phones, MP3 players, and so forth which have been discarded by their unique clients.¹

Present Scenario E-Waste Management in India

The greater part of the exercises directly from the assortment, transportation, isolation, destroying, and so forth, bone-dry one by chaotic areas physically. Being curve wellspring of reusable and valuable material, E-squander is additionally a decent wellspring of income age for some people in India. The big portion of the Indian population earned their livelihood by collecting and selling the inorganic waste- like plastics, polythene bags, glass bottles, cardboards, paper, other ferrous metals, etc. The latest Global E-Waste Monitor places India as one of the highest contributors to global e-waste, generating over 2

million metric tonnes in 2016. Posing serious health and environmental risks, growing e-waste represents the hidden cost of increasingly digital lives in an information society.

India is as of now an innovator in the administration and reusing of e-squander. However, more than 90% is overseen in the chaotic area by independent companies and individual business visionaries, ordinarily from low-pay underestimated networks, and frequently ladies. E-squander contains different harmful substances like mercury and lead, delayed openness to which can prompt significant medical conditions. As administration instruments are progressively digitized and industry re-repositions itself to use Industry 4.0 arrangements, the age of e-waste will turn into a side-effect of institutional decisions instead of purchaser utilization and conduct alone.

With only 33% of the populace possessing a PDA, India as of now has the second biggest number of advanced cell clients on the planet, almost multiple times that of the United States. The measure of e-squander produced will dramatically increment in the coming decade as the expense of customer hardware decrease, working class earnings rise, and the recurrence at which gadgets are disposed of increments.⁹

Frequently Recycled Electronics

With such a noticeably short useful life, these electronics transition into e-waste at a rapid pace. In fact, it was estimated that there were 422 million unused and unwanted cell phones accumulating in people's homes by the end of year 2015.

Globally, a cell phone is sold to around one of every four people on an annual basis. Every year millions of electronic devices such as mobile phones, TVs, computers, laptops, and tablets reach the end of their useful life.²

Burden of E-Waste in India

India is one of the fastest growing economies of the world and the domestic demand for consumer durables has been skyrocketing. From 1998 to 2002, there was a 53.1% increase in the sales of domestic household appliances, both large and small all over the world.

In India, solid waste management, with the emergence of e-waste, has become a complicated task. The total waste generated by obsolete or broken down electronic and electrical equipment was estimated to be 1, 46,000 tonnes for the year 2005, which is expected to exceed 8, 00,000 tonnes by 2012.

Another report estimated that in India, business and individual households make approximately 1.38 million personal computers obsolete every year, accelerating the rate of e-waste generation, which is around 10%, annually going to affect environmental health indicators.⁵

Effects and Health Impacts of Recycling E-Waste in India

Electronic hardware's contain numerous dangerous metallic foreign substances like lead, cadmium, and beryllium and brominates. The part including iron, copper, aluminum, gold, and different metals in e-squander is more than half, while plastics represent about 40% and the unsafe toxins involve just about 2.70%. Of numerous poisonous substantial metals, lead is the most generally utilized in electronic gadgets for different purposes, bringing about an assortment of wellbeing perils because of natural defilement. Lead enters organic frameworks through food, water, air, and soil. Kids are especially defenseless against lead harming – more so than grown-ups on the grounds that they assimilate more lead from their current circumstance and their sensory system and blood get influenced.³

It is found that the e-waste recycling activities had contributed to the elevated blood lead levels in children living in China, which is one of the popular destinations of e-waste. This was due to that fact that the processes and techniques used during the recycling activities were very primitive. Various studies have reported the soaring levels of toxic heavy metals and organic contaminants in samples of dust, soil, river sediment, surface water, and groundwater of Guiyu in China. In the same areas, the residents had a high incidence of skin damage, headaches, vertigo, nausea, chronic gastritis, and gastric and duodenal ulcers. Further it was found that the blood lead levels of children were higher than the mean level in China, and there was no significant difference between boys and girls.³

The pitcher shown below describes about source, constituents and their health effects in Figure 1.

E-waste sources	Constituents	Health effects
Solder in printed circuit boards, glass panels, and gaskets in computer monitors	Lead	<ul style="list-style-type: none"> Damage to central and peripheral nervous systems, blood systems, and kidney damage Adverse effects on brain development of children; causes damage to the circulatory system and kidney
Chip resistors and semi-conductors	Cadmium	<ul style="list-style-type: none"> Toxic irreversible effects on human health Accumulates in kidney and liver Causes neural damage
Relays and switches, and printed circuit boards	Mercury	<ul style="list-style-type: none"> Chronic damage to the brain Respiratory and skin disorders due to bioaccumulation in fishes

Figure 1

Under the scenario, the E-waste management Strategy for India has the following challenges, which need to be studied and addressed in more systematic and scientific manner:

Scientific Challenges

- Eco-friendly recovery solutions
- Precious metals
- Base metals
- Value addition to recyclables for reuse
- Plastics
- Glass and other recyclables
- Disposal of process waste and residues
- Size reduction
- Toxic reduction

Engineering Challenges

- Scientific collection, transport, handling, Segregation, and disposal of E-waste
- Integrated/distributed processing facilities
- Unorganized to organize
- Involvement of SMEs and NGOs
- Feasible techno-economical solutions
- Processing
- Recycling
- Recovery³

Benefits of Electronically Waste Recycling

Recycling E-waste has Various Environmental and Economic Benefits:

According to EPA, recycling one million laptops can save the energy equivalent of electricity that can run 3,657 U.S. for a year. EPA also states that by recycling one million cell phones, we can recover 75 lbs. of gold, 772 lbs. of silver, and 35,274 lbs. of copper and 33 lbs. of palladium.

According to the Electronics Take Back Coalition, it takes 1.5 tons of water, 530 lbs. of fossil fuel and 40 lbs. of chemicals to manufacture a single computer and monitor. Also, 81 percent of energy associated with a computer is used during production and not during operation.

Electronics contains various toxic and hazardous chemicals and materials that are released into the environment if we do not dispose of them properly. Recycling e-waste enables us to recover various valuable metals and other materials from electronics, saving natural resources (energy), reducing pollution, conserving landfill space, and creating jobs.⁶

Recycling, Re-Use and Benefits

The composition of e-waste consists of diverse items like ferrous and nonferrous metals, glass, plastic, electronic components and other items and it is also revealed that e-waste consists of hazardous elements. Therefore, the major approach to treat e-waste is to reduce the concentration of these hazardous chemicals and elements

through recycle and recovery. In the process of recycling or recovery, certain e-waste fractions act as secondary raw material for recovery of valuable items.

The reuse and recuperation incorporate the accompanying unit tasks: Dismantling: Removal of parts containing perilous substances (CFCs, Hg switches, PCB); expulsion of effectively open parts containing important substances (link containing copper, steel, iron, valuable metal containing parts, for example contacts).

Renovation and reuse, Recycling/recuperation of significant materials Treatment/removal of risky materials and waste: CFCs are dealt with thermally, PCB is burned or discarded in underground stockpiles, and Hg is frequently reused or discarded in underground landfill destinations. Reusing crude materials from end-of-life gadgets is the best answer for the developing e-squander issue. By destroying and giving reuse conceivable outcomes, flawless regular assets are monitored and air furthermore, water contamination brought about by perilous removal is stayed away from. Furthermore, reusing diminishes the measure of ozone depleting substance outflows brought about by the assembling of new items.⁸

Benefits of E-Waste Recycling for India

Conserves Natural Resources

In India Recycling recovers valuable materials from old electronics that can be used to make new products. As a result, we save energy, reduce pollution, reduce greenhouse gas emissions, and save natural resources by extracting fewer raw materials from the earth.

Protects Environment

E-waste recycling provides proper handling and management of toxic chemical substances like mercury, lead and cadmium contained in the e-waste stream.

Creates Jobs

In India E-waste recycling creates new jobs for professional recyclers and creates a second market for the recycled materials.

Saves Landfills

E-waste recycling saves unnecessary dumps and landfills in India.⁶

Conclusion

Consistently expanding measure of e-squander related with the absence of mindfulness and suitable ability is developing the issue. Electronic waste administration numerous specialized arrangements are accessible, yet to be embraced in the administration framework, essential conditions like enactment, assortment framework, coordination and labor ought to be readied. An enormous number of laborers are

engaged with unrefined destroying of these electronic things for their vocation and their wellbeing is in danger; thusly, there is an earnest need to design a preventive technique comparable to wellbeing perils of electronic waste taking care of among these specialists in India. Required data ought to be given to these laborers regarding safe treatment of electronic waste and assurance. This may require operational examination and assessment considers.⁴

References

1. Haque T. Introduction to Electronics (E-waste) recycling. 2018.
2. Kaur B. E-waste is not waste, but treasure. Jan 2019.
3. Wath S. E-waste scenario in India, its management and implications. 2010.
4. Gharuan. Project Report on E-Waste. 2016.
5. Welankar P. 26,000 metric tonnes of e-waste and PMC dawdling on policy. 2018.
6. GCL Recycle & Refining Co. 2017. http://www.gclcevre.com/en-EN/Benefits-of-E-waste-Recycling, PGE_15.html.
7. Monika, Kishore J. E-Waste Management: As a Challenge to Public Health in India. 2010.
8. Johri R. E-waste: implications, regulations, and management in India and current global best practices. 2018
9. Aneja U. Digital India will only be sustainable with the produce-consume-reuse model. 2013.