

Article

GPS Satellite Advancements and its Future

Gopal Kochhar¹, Aditya Agarwal², Anidhya Athaiya³, Rajesh Rajaan⁴, Sunil Gupta⁵

^{1,2,3,4,5}Department of Computer Science & Engineering, Global Institute of Technology Jaipur, Rajasthan, India.

DOI: <https://doi.org/10.24321/2456.1398.202001>

INFO

Corresponding Author:

Gopal Kochhar, Department of Computer Science & Engineering, Global Institute of Technology Jaipur, Rajasthan, India.

E-mail Id:

kochhar.gopal97@gmail.com

Orcid Id:

<https://orcid.org/0000-0003-2034-6888>

How to cite this article:

Kochhar G, Agarwal A, Athaiya A et al. GPS Satellite Advancements and its Future. *J Adv Res Instru Control Engi* 2020; 7(1): 1-4.

Date of Submission: 2020-04-16

Date of Acceptance: 2020-05-01

ABSTRACT

This paper gives an brief introduction of global positioning system, its generations, the future and progressions that are attained by the GPS and tracking systems. The latest usage and the comparative study of the GPS satellites that are launched and are operational till date.

Keywords: GPS Usage, GPS Segments, GPS Satellites, GPS Future

Introduction

The Global Positioning System is a constellation of in any event 24 satellites conveying radio signs to clients in order to provide positioning, navigation, and timing. Global civil GPS service has been available universal since 1993, constantly and liberated from direct client expenses. Both our generation and economy depends on technical foundation and GPS, yet GPS signals are helpless against intentional and unintentional disruptions.

GPS Usage

Ever since the GPS became available to the masses, it sure did revolutionize the modern lifestyle and bring accommodation to us from various perspectives, particularly on the web. From Going to places, finding our lost dog, tracking down where our vehicle got stolen, it makes all that feel like such a breeze indeed. To be more particular about the fields of usage of GPS are communications, energy, emergency, transportsations, and space satellite deployment all depend on GPS, and the of GPS signal

Could have unimaginable impact on our society. With its 24 hours a day, all weather conditions Two classes of signal are available.

Civilian GPS

The civilian GPS is called upon the free GPS System without any user fees and by only paying the price of the device. With the vertical correctness is claimed of 4 meter RMS(7.8 meter 95% confidence Interval) horizontal accuracy for civilian GPS is about 3 meters. The L1C is a civilian-use signal, to be broadcast on the L1 Frequency (1575.42 MHz).

Military GPS

The US Airforce and Missile systems center chose Boeing to create and make 33 GPS Compare Satellites, the earliest of which went into service in 1978. Delivery of which started in April 2001 and sustained the GPS constellation, to provide worldwide navigation. The military receivers use two GPS frequencies for improved accuracy, which is L1 carrier of 1575.42 MHz and L2 carrier is 1227.60 MHz for more precise military pseudo-random code.

GPS Segments

Numerous individuals have no clue how their worldwide situating system really works. Despite the sophistication of the innovation, the arrangement is very basic. There are three main parts of the GPS system which helps in the continue positioning and navigating these three segments are.

The Control Segment

This part consists of 5 worldwide unmanned base-stations that screen the satellites to follow their definite situation in space, and to ensure that they are working accurately. The stations continually screen the circles of the satellites furthermore, utilize extremely exact radar to check elevation, position and speed. Since 1993, the US Air Force has made its Global Positioning System accessible to the world, and since the time then that development has found its way into various highlights of. The current Operational Control Segment (OCS) incorporates an ace control station, another ace control station, 11 order and control reception apparatuses, and 16 observing destinations.

The Space Segment

This part comprises of satellites, fabricated by Rockwell International, which are propelled into space by rockets, from Cape Canaveral, Florida. They are about the size of a vehicle, and weigh about 19,000lbs. Each satellite is in orbit over the earth at a height of 11,000 nautical miles (12,660 miles), and takes 12 hours to orbit one time GPS satellites fly in medium Earth circle (MEO) at a height of approximately 20,200 km (12,550 miles). Each satellite circles the Earth twice a day. Expandable 24-Slot satellite group of stars, as characterized in the SPS Performance Standard. The satellites in the GPS group of stars are organized into six equally-spaced orbital planes surrounding the Earth. Each plane contains four "spaces" involved by standard satellites. This 24-space plan guarantees clients can see in any event four satellites from basically any point on the planet. The Air Force typically flies in excess of 24 GPS satellites to maintain coverage whenever the starting point satellites are serviced or withdrawn. The extra satellites may increment GPS execution however are not viewed as a component of the core constellation.

In June 2011, the Air Force magnificently over a GPS constellation development familiar as the "Expandable 24" setup. Three of the 24 spaces were protracted, and six satellites were re-positioned, with the goal that three of the extra satellites became part of the constellation baseline. Afterwards, GPS presently adequately works as a 27-space group of stars with improved inclusion in many pieces of the world.

The User Segment

This part contains of user receivers which are handheld or,

can be positioned in a vehicle. All GPS receivers have an almanac programmed into their computer, which reveals to them where each satellite is at any given moment. Like the Internet, GPS is a basic component of the worldwide data framework. The free, open, what's more, trustworthy nature of GPS has prompted the growth of hundreds of applications affecting every aspect of modern life. GPS innovation is currently in everything from mobile phones and wristwatches to bulldozers, transporting holders, and ATM's.

Generations of Operational GPS Satellites

A GPS satellite is a satellite used by NAVSTAR GPS. The basic satellite in the framework. Navstar was send on Feb 22, 1978. The GPS satellite constellation circles the earth about 20,000 km and finishes two orbits every day. The Following satellites are launched as followed:

Block IIA satellite

The first operational GPS satellites for a 7 year design life and were launched in as first in Nov 26, 1990 and last on Nov 6, 1997. The last satellite broadcast on the PRN 18 signal and was removed on Oct 9 2019. The satellites are 0 operationally today and are 5 residual.

Block IIR Satellite

The Block IIR arrangements are "replenishment" (substitution) satellites created by Lockheed Martin. The first endeavored dispatch of a Block IIR satellite bombed on January 17, 1997 when the Delta II rocket detonated 12 seconds into flight. The main fruitful dispatch was on July 23, 1997. 12 satellites in the series were successfully launched and are operational. In any event ten satellites right now a trial S-band payload for search and salvage, known as Distress Alerting Satellite System.

Block IIR-M Satellites

GPS Block IIR-M satellite developments include a new military sign (M-Code) (M-Code) on both the L1 and L2 channels, and an increasingly vigorous common sign (L2C) on the L2 channel. Presently the GPS constellation consists of 16 GPS Block IIA satellites worked by Boeing, 12 GPS Block IIR and 3 GPS Block IIR-M satellites worked by Lockheed Martin with 5 GPS Block IIR-M satellites remaining. The following GPS Block IIR-17(M) dispatch was anticipated October 2007.

Block IIF Satellites

GPS Block IIF satellites are the up and coming age of GPS space vehicles. The GPS Block IIF satellites, being built by Boeing, will give all the capacities of the past blocks with additional benefits to include an extended structure life of 12 years, quicker processors with additional memory, and another common sign on a third recurrence (L5). The

main GPS Block IIF satellite is booked to dispatch in 2008.

GPS Block III

GPS Block III will be the following square of GPS satellites. GPS IIIA will transmit a new civilian signal (L1C), which is designed to be highly interoperable with the European Galileo satellite route framework sign and expected to be completely good and interoperable with those signs made arrangements for communicate on Japan's Quazi-Zenith Satellite System. For military clients, GPS IIIA satellites will give further increases in the jamming capability of the M-Code signals. The GPS III satellites will be created in three additions with each increment including more capabilities based on technical maturity. GPS IIIA is projected to be available for launch in late 2020s.

Future of GPS

Since 1993, the US Air Force has made its Global Positioning System accessible to the world, and since the time then that development has found its way into various highlights of our everyday lives. It's in our vehicles, in our telephones, and even in our watches. It's not surprising then that the United States continues to invest in the development of the technology for both regular citizen and military use and that speculation is beginning to pay off.

The primary GPS III satellite propelled by Lockheed Martin cost an estimated \$529 million to build. And with nine more satellites arranged, the GPS III undertaking will move to a walloping \$5.5 billion when everything is said and done. Up front cost will be offset by the satellite's outstanding life span. Dissimilar to the early GPS satellites which have a plan life of 1.5 years, the new GPS III satellites will last 15 a long time, twice the length of the most established satellites in circle and 25 percent longer than the most current satellites in the GPS armada. Not exclusively will the GPS II satellites last more, yet they moreover won't get obsolete as quickly. The new GPS III satellite framework was intended to adjust as new innovation creates and mission objectives change.

The current GPS II framework is exact, yet GPS III is going to take things to a whole new level. The next generation of GPS is relied upon to be multiple times more precise than existing GPS technology. That means the 5 to 10-meter accuracy you see now with existing GPS innovation will be cut to 1 to 3 meters.

The sign likewise will be all the more remarkable, permitting it to overcome annoying interference that degrades the signal. The way in to this growth is the new L1C non military personnel signal, which is interoperable with other international Global Navigation Satellite Systems (GNSS). The L1C signal offers a similar focus recurrence as Europe's Galileo network, Japan's QZSS and China's Beidou. Truth be told, signal plans groups from Japan and Europe worked

with the US to guarantee this similarity. In the future, GPS receivers will be ready to gather area information from various worldwide route satellite systems at once and use that info to afford drop dead precise tracking.

In the sky, GPS III will transmit encoded M-Code signals that are more impressive than existing military signs. Not just will these signs be increasingly solid for military tasks, yet they moreover will be multiple times progressively safe to jamming observed in signals. We finally got acquainted of GPS parts and its advancements so far hoping we have covered and have summarized. GPS positioning has evolved rapidly over the last ten years so that it can now position kinematic ally, in real-time, and instantaneously. There is therefore a blurring of the change amid exact GPS triangulation and GPS surveying delays. If certain conditions are fulfilled, position based positioning is almost indistinguishable from interrupted GPS trackers, at a much higher accuracy. However, there are very real constraints to the universal use of GPS positioning systems.

Conclusion

We finally got acquainted of GPS parts and its progressions so far hoping we have covered and have summarized. GPS positioning has evolved rapidly over the last ten years so that it can now position kinematic ally, in real-time, and immediately. There is consequently a distorting of the dissimilarity amid accurate GPS navigation and GPS surveying delays. If certain conditions are fulfilled, position based positioning is almost indistinguishable from interrupted GPS trackers, at a much higher accuracy. However, there are very real constraints to the universal use of GPS positioning systems.

Acknowledgment

The successful and final outcome of this research required lots of guidance and assistance from many people and I am extremely fortunate to have completed my research work. Whatever I have done is just because of such direction and help and I ought not to neglect to express gratitude toward Ms. Anidhya Athaiya at first place for giving me an opportunity to do this work and providing me support and guidance through which I could complete the work in time. I am very appreciative to her for giving such co-activity.

References

1. GPS.gov: GPS Accuracy. www.gps.gov. from the original on January 4, 2018.
2. Guier, William H, Weiffenbach, George C. Genesis of Satellite Navigation.(PDF). *Johns Hopkins APL Technical Digest*. 1997; 19 (1): 178-181. Retrieved April 9, 2012.S.
3. http://www.ehow.com/about_6595713_purpose-gps-system-started.html.
4. http://www.ehow.com/about_5730112_objectives-global-positioning-system.html.

5. Jury HL, Application of Kalman Filter to Real- Time Navigation using Synchronous Satellites, Proceeding of the 10th International Symposium on Space Technology and Science, Tokyo, 1973: 945–952.
6. <http://www.webmapsolutions.com/future-developments-gps-technology>.
7. GPS Accuracy. GPS.gov.GPS.gov. Retrieved May 4, 2015.
8. http://en.wikipedia.org/wiki/GPS_navigation_device.
9. “NAVSTAR GPS User Equipment Introduction” (PDF). United States Government. 2008.
10. Pike J. GPS III Operational Control Segment (OCX). GlobalSecurity.org. Archived from the original on 2009.
11. http://en.wikipedia.org/wiki/Global_Positioning_System.
12. <http://electronics.howstuffworks.com/gadgets/travel/gps.htm>.