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Delhi consistently experiences severe air quality episodes, with 
particulate loads frequently breaching recom mended limits. Anticipating 
the Air Quality Index (AQI) with adequate lead time is central to timely 
advisories, exposure man agement, and responsive control actions. 
This work assembles a comparative forecasting framework spanning 
statistical baselines, machine learning, and deep sequence models to 
... predict AQI along with PM2.5 and PM10 (both in µg m−3). The study 
evaluates classical time-series tools (ARIMA, Prophet), non-linear 
regres sors (Support Vector Regression, Random Forest), and recurrent 
neural networks (Long Short-Term Memory). Using five years of hourly 
observations, we adopt a uniform pipeline for cleaning, scaling, and 
strictly forward-in-time validation. Empirical results show LSTM and 
Random Forest deliver consistent gains over the statistical baselines, 
capturing rapid fluctuations and seasonal shifts more faithfully. Overall, 
the analysis underscores the value of hybrid, data-driven approaches for 
reliable urban air quality forecasting and supports targeted mitigation 
in highly polluted settings.
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Introduction
Air pollution in large metropolitan regions has emerged as 
a persistent environmental and public health challenge, 
with Delhi frequently ranking among the worst-affected 
cities. Con centrations of particulate matter (PM2.5 and 
PM10), nitrogen oxides, and carbon monoxide often exceed 
national and inter national standards, elevating risks to 
human health and urban resilience.1 The Air Quality Index 
(AQI) condenses multi- pollutant conditions into a single 
indicator and is widely used for communication, advisories, 

and action planning. Accurate and timely AQI prediction is 
therefore vital for safeguarding communities and guiding 
short-term interventions.

Forecasting remains difficult because pollution arises from 
interacting sources and meteorology, exhibiting strong 
nonlin- earity and pronounced seasonality. Traditional au-
toregressive methods have long been used for time-series 
prediction, yet their linear assumptions can limit fidelity 
under complex dynamics. Recent advances in machine 
learning and deep learning provide mechanisms to capture 
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nonlinear behaviour and temporal dependencies directly 
from historical records.

This study develops and benchmarks a set of models for 
Delhi’s AQI forecasting, with emphasis on PM2.5 and PM10 
as dominant drivers. We compare statistical approaches 
(ARIMA, Prophet), non-linear machine learning methods 
(Support Vec- tor Regression, Random Forest), and se-
quential deep networks (Long Short-Term Memory). The 
results offer a clear view of the comparative strengths 
of these families and inform the design of robust fore-
casting pipelines for operational air quality management 
in a highly polluted megacity.

Literature Survey
Air quality prediction has been explored using both tra- 
ditional statistical tools and modern machine learning 
ap- proaches.2 Earlier research predominantly relied on Au- 
toregressive Integrated Moving Average (ARIMA) models, 
which capture persistence, trends, and short-term seasonal 
behaviour.6 While suitable for relatively stable dynamics, 
ARIMA suffers from limitations when confronted with the 
nonlinear interactions typical of urban pollution, such as 
rapid chemical transformations, sudden emission spikes, 
or abrupt meteorological changes.

The emergence of machine learning brought new oppor-
tu- nities for handling these complexities. Models such as 
Support Vector Regression (SVR) introduced the ability to 
capture nonlinear pollutant–meteorology relationships 
through kernel functions, while ensemble techniques like 
Random Forest gained popularity due to their robustness 
to noise and their capacity to represent intricate feature 
interactions without extensive manual feature engineering. 
These methods demon- strated better predictive accuracy 
compared to classical linear frameworks, particularly under 
conditions of irregular emis- sions and heterogeneous pol-
lutant sources.2 Recent studies have explored increasingly 
complex architectures, including hybrid deep learning 
models,1 meteorology-integrated hy- brid frameworks,9,10 
and temporal graph networks,3 demonstrating the field’s 
rapid evolution.

Motivated by these developments, this study provides a 
comparative analysis of statistical methods (ARIMA, Proph-
et), non-linear machine learning algorithms (SVR, Random 
For- est), and deep sequential models (LSTM). The goal is 
to evaluate their relative strengths within a unified exper-
imental setup that reflects the high emission intensity, 
meteorological variability, and severe seasonal pollution 
cycles characteristic of Delhi.

Dataset and Preprocessing
The analysis draws on the Air Quality Data in India (2015–
2020),8 which contains hourly records from national 
monitoring stations managed by the Central Pollution 
Control

Board (CPCB).7 For this study, only Delhi-specific entries 
are retained. Variables include AQI, AQI category, and 
pollu- tant concentrations (PM2.5, PM10, NO, NO2, NOx, 
NH3, CO, SO2, O3, Benzene, Toluene, and Xylene). These 
indicators support both AQI forecasting and pollutant-spe-
cific modelling.

Key dataset attributes

•	 Datetime: Timestamp of measurement in hourly 
resolutioin

•	 Pollutants: Major regulated pollutants relevant to AQI.
•	 AQI: Computed overall index value.
•	 AQI Bucket: Category labels (e.g., Good, Moderate, 

Poor).

Figures 1–3 summarise the underlying data patterns, in-
clud- ing distributional skewness, long-term cycles, and 
pollutant interdependence.

LSTM forecasting architecture with look-back window L 
and a dense readout layer. Hidden (h) and cell (c) states 
propagate across time; the final hidden state feeds a 
dense head to produce the one-step-ahead prediction yˆt+1.

Experiments and Methodology
Experimental Setup

To ensure a fair and reproducible comparison across mod-
els, we designed a consistent evaluation framework. The 
available dataset was divided chronologically, with 80% of 
the records used exclusively for training and the remaining 
20% reserved for testing. This forward-in-time split was 
chosen to mimic realistic forecasting conditions and to 
minimise the risk of information leakage between past 
and future observations.

All algorithms were implemented in the Python ecosys- 
tem using established libraries. The statistical baselines 
were developed with the statsmodels implementation of 
ARIMA and the prophet package for trend-seasonality de-
composition. For machine learning baselines, we employed 
scikit-learn to train Support Vector Regression (SVR) and 
Random Forest models. Sequential deep learning mod- els, 
specifically Long Short-Term Memory (LSTM) networks, 
were implemented using TensorFlow/Keras.

Model hyperparameters were tuned through a validation 
subset carved out from the training split, allowing robust 
opti- misation without contaminating the test data. This 
ensures that performance metrics reported in the re-
sults section correspond strictly to unseen observations, 
thereby providing a reliable assessment of each model’s 
generalisation ability.

Evaluation Metrics

To quantitatively assess model performance, we employed 
a set of widely accepted regression metrics:
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Mean Absolute Error (MAE)

LSTM Model Architecture

The Long Short-Term Memory (LSTM) network is designed 
to capture temporal dependencies in sequential data. Its 
archi- tecture is based on memory cells with input, forget, 
and output gates. The update equations for each time 
step t are:

ft = σ(Wf · [ht−1, xt] + bf )                                                (5)

it = σ(Wi · [ht−1, xt] + bi)                                                 (6)

C˜t = tanh(WC · [ht−1, xt] + bC)                                       (7)

Ct = ft  Ct−1 + it  C˜t                                                        (8)

ot = σ(Wo · [ht−1, xt] + bo)                                                 (9)

ht = ot  tanh(Ct)                                                               (10)

Here, xt is the input, ht the hidden state, Ct the cell state, 
σ the sigmoid function, and  elementwise multiplication.

Results
The performance comparison of the different forecasting 
models on the test dataset is summarised in Table I. The 
findings reveal a clear ranking in predictive capability 
across the model families. Traditional linear approaches 
such as ARIMA and Prophet provide a useful point of 
reference but fall short when confronted with the nonlinear 
variability and abrupt fluctuations that characterise Delhi’s 
air quality. Their reliance on stationary assumptions and 
linear trend decomposition limits their adaptability to 
sudden pollution surges.

In contrast, machine learning and deep learning frameworks 
show a marked enhancement in predictive accuracy. The 
Random Forest model demonstrates notable skill, largely 
due to its ensemble mechanism which aggregates multiple 
decision trees. This structure enables it to capture complex 
pollutant interactions, account for outliers, and generalise 
well across diverse conditions. Support Vector Regression 
also surpasses the linear baselines, though its kernel-based 
learning still strug- gles to fully adapt under highly volatile 
pollution episodes.

The Long Short-Term Memory (LSTM) architecture 
consistently achieves the most reliable forecasts, with 
the lowest error scores (MAE, RMSE) and the highest 
R2 values. Its recurrent structure and gating mechanisms 
allow it to en- code temporal dependencies effectively, 
learning both long- term seasonal cycles and short-lived 
pollution spikes. The close alignment between LSTM 
predictions and observed AQI trends further underscores 
its robustness. The superior perfor- mance of the LSTM 
network can be attributed to its recurrent architecture 
and gating mechanism, which are specifically designed to 
capture long-range temporal dependencies in time- series 
data. Similarly, the Random Forest’s strong performance 
stems from its ensemble nature, which reduces variance by 
averaging multiple decision trees, making it robust to noise 
and effective at modeling complex interactions without 
overfitting.

Overall, the comparative results emphasize that hybrid, 
data- driven techniques—particularly those leveraging 
sequential deep learning architectures—offer the greatest 
promise for delivering accurate and stable AQI forecasts 
in urban environ- ments marked by rapid variability and 
multifactor influences.

Figure 7 highlights the distribution of prediction errors 
across models, showing that the LSTM network achieves 
the narrowest spread of residuals and the highest R2 values 
for both PM2.5 and PM10. The Random Forest model also 
performs competitively, owing to its ensemble structure 
which mitigates overfitting. A qualitative inspection of 
LSTM fore- casts, presented in Fig. 6, shows close alignment 
with observed time series, including during periods of 
elevated pollution.

Model Uncertainty and Limitations
Despite the promising results, several factors introduce 
uncertainty into the presented forecasting framework. 
First, the air quality data used in this study are subject 
to instrumental and sampling errors from ground-based 
monitoring stations, which can propagate through model 
training and evaluation. Additionally, spatial coverage 
across Delhi is uneven—some monitoring sites may not 
fully capture localised emission events, leading to potential 
under representation of micro-scale variability.

ARIMA
PM2.5 32.5 1850.2 43.0 0.75
PM10 45.1 3100.5 55.7 0.72

Prophet
PM2.5 28.9 1540.7 39.2 0.80
PM10 40.2 2650.1 51.5 0.78

SVR
PM2.5 25.1 1210.3 34.8 0.85
PM10 35.6 2100.8 45.8 0.83

LSTM
PM2.5 18.2 850.6 29.1 0.91
PM10 25.8 1450.2 38.1 0.89

Random Forest
PM2.5 19.5 920.4 30.3 0.89
PM10 27.1 1580.9 39.8 0.88

Table I.Comparative Performance of Forecasting Mod-
els for pm2.5 and pm10 . Bold Values Indicate The Best 

Scores Across Metrics
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A second source of uncertainty arises from the temporal 
resolution and missing data. Hourly records are occasionally 
missing or interpolated, which may affect the model’s ability 
to learn transient pollution spikes. Although preprocessing 
techniques such as normalisation and outlier handling were 
applied, residual data inconsistencies remain a source of 
model uncertainty.

From the modelling perspective, algorithmic bias and 
hyperparameter sensitivity contribute to performance 

vari- ability. While Random Forest and LSTM models exhibit 
strong generalisation, their forecasts depend heavily on 
architecture depth, look-back window size, and feature 
scaling strategy. The absence of meteorological covariates 
such as wind speed, humidity, and temperature further 
limits interpretability under changing weather regimes. 
Future extensions should include these physical drivers and 
perform ensemble calibration to better quantify prediction 
confidence intervals.

(a) PM2.5 distribution (b) PM10 distribution

(c) Log-normalized PM2.5 distribution (d) Log-normalized PM10 distribution

Figure 1.Exploratory Data Analysis (EDA) of Delhi’s AQI dataset. The plots illustrate raw and log-normalized pol-
lutant distributions, highlighting skewed patterns and heavy-tailed behavior typical of urban particulate data (units 

in µg m−3)

Figure 2.Time series of PM2.5 and PM10 concentrations in Delhi (2015–2020), showing seasonal cycles and ex-
treme pollution episodes (units in µg m−3)
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Figure 3.Correlation structure between pollutants and AQI in Delhi, indicating strong positive association of AQI 
with particulate matter (PM2.5, PM10) and moderate links with gaseous pollutants.

Figure 4.Pairwise relationships between key pollutants. This visualization helps in identifying multicollinearity and 
understanding feature interactions and distributions across all considered variables
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Figure 5.LSTM forecasting architecture with look-back window L and a dense readout layer. Hidden (h) and cell (c) 
states propagate across time; the final hidden state feeds a dense head to produce the one-step-ahead prediction 

yˆt+1

Figure 6.Actual vs. Predicted values for the LSTM model on the PM2.5 time series.

Figure 7.Comparative boxplot of RMSE distributions for each model
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Conclusion
This study carried out a comprehensive comparison of 
mul- tiple forecasting strategies for Delhi’s air quality, 
examining statistical baselines, machine learning regres-
sors, and deep learning sequence models. The evaluation 
results demonstrated a clear performance hierarchy. As 
shown in Table I, traditional methods such as ARIMA and 
Prophet achieved R2 values between 0.72 and 0.80, with 
relatively high error magnitudes (MAE 30–45). While these 
approaches provided useful baselines, they were unable 
to capture abrupt pollution spikes or complex nonlinear 
interactions.

Machine learning models offered substantial improve-
ments. Support Vector Regression reduced MAE to 25.1 
for PM2.5 and

35.6 for PM10, while Random Forest achieved even lower er-
ror scores (MAE 19.5 for PM2.5 and 27.1 for PM10), reflecting 
the benefits of ensemble learning in handling heterogeneity 
and noise. The best results, however, were obtained from 
the Long Short-Term Memory (LSTM) network, which 
reached MAE of 18.2 (PM2.5) and 25.8 (PM10), with R2 val-
ues above 0.89. These findings confirm the advantage of 
recurrent architectures in modeling both gradual seasonal 
cycles and sudden high- intensity events.

The exploratory data analysis phase proved instrumen-
tal in shaping the modelling pipeline. Identifying skewed 
pollu- tant distributions, seasonal variability, and strong 
correlations between AQI and particulate matter justified 
the use of nor- malisation, variance-stabilising transfor-
mations, and temporal feature engineering. These steps 
ensured consistent model performance and avoided bias 
from heavy-tailed distributions.

Looking ahead, several extensions could enhance the predic- 
tive framework. Incorporating meteorological variables 
such as temperature, wind patterns, and humidity may 
improve early detection of sudden regime shifts.4 Inte-
grating multi-station data across Delhi would allow for 
spatially resolved forecast- ing, highlighting local hotspots. 
Moreover, recent advances in attention-based recurrent 
networks, graph neural networks, and transformer-based 
models offer promising directions for longer-horizon fore-
casts and enhanced interpretability.5

In summary, the study highlights that while statistical 
mod- els provide useful benchmarks, machine learning 
and espe- cially deep recurrent networks deliver superior 
accuracy and robustness. These findings reinforce the 
potential of hybrid, data-driven forecasting systems to 
support evidence-based policy-making and timely public 
advisories in cities facing persistent air quality challenges.

From a policy perspective, the proposed framework can 
serve as a foundational tool for municipal and regional 

au- thorities. By integrating such predictive models into 
air-quality monitoring networks, agencies like the CPCB 
and Delhi Pol- lution Control Committee (DPCC) could 
issue more accurate early warnings, dynamically adjust 
traffic management or industrial operations, and design 
localised emission-control measures. Furthermore, cou-
pling model outputs with low-cost IoT sensor networks 
and citizen-science data could enhance spatial coverage, 
improve transparency, and support data- driven environ-
mental governance. In the long term, such op- erational 
forecasting systems would facilitate proactive rather than 
reactive responses to pollution episodes, improving both 
public health outcomes and regulatory efficiency.
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