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ABSTRACT

Delhi consistently experiences severe air quality episodes, with
particulate loads frequently breaching recom mended limits. Anticipating
the Air Quality Index (AQl) with adequate lead time is central to timely
advisories, exposure man agement, and responsive control actions.
This work assembles a comparative forecasting framework spanning
statistical baselines, machine learning, and deep sequence models to
... predict AQl along with PM, . and PM_ (both in pg m=). The study
evaluates classical time-series tools (ARIMA, Prophet), non-linear
regres sors (Support Vector Regression, Random Forest), and recurrent
neural networks (Long Short-Term Memory). Using five years of hourly
observations, we adopt a uniform pipeline for cleaning, scaling, and
strictly forward-in-time validation. Empirical results show LSTM and
Random Forest deliver consistent gains over the statistical baselines,
capturing rapid fluctuations and seasonal shifts more faithfully. Overall,
the analysis underscores the value of hybrid, data-driven approaches for
reliable urban air quality forecasting and supports targeted mitigation
in highly polluted settings.

Keywords: Air Quality Index, Time-Series Forecasting, Machine
Learning, Deep Learning, ARIMA, Prophet, Support Vector Regression,
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Introduction

and action planning. Accurate and timely AQl prediction is

Air pollution in large metropolitan regions has emerged as
a persistent environmental and public health challenge,
with Delhi frequently ranking among the worst-affected
cities. Con centrations of particulate matter (PM,, and
PM, ), nitrogen oxides, and carbon monoxide often exceed
national and inter national standards, elevating risks to
human health and urban resilience.! The Air Quality Index
(AQl) condenses multi- pollutant conditions into a single
indicator and is widely used for communication, advisories,

therefore vital for safeguarding communities and guiding
short-term interventions.

Forecasting remains difficult because pollution arises from
interacting sources and meteorology, exhibiting strong
nonlin- earity and pronounced seasonality. Traditional au-
toregressive methods have long been used for time-series
prediction, yet their linear assumptions can limit fidelity
under complex dynamics. Recent advances in machine
learning and deep learning provide mechanisms to capture
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nonlinear behaviour and temporal dependencies directly
from historical records.

This study develops and benchmarks a set of models for
Delhi’s AQl forecasting, with emphasis on PM, . and PM_
as dominant drivers. We compare statistical approaches
(ARIMA, Prophet), non-linear machine learning methods
(Support Vec- tor Regression, Random Forest), and se-
quential deep networks (Long Short-Term Memory). The
results offer a clear view of the comparative strengths
of these families and inform the design of robust fore-
casting pipelines for operational air quality management
in a highly polluted megacity.

Literature Survey

Air quality prediction has been explored using both tra-
ditional statistical tools and modern machine learning
ap- proaches.? Earlier research predominantly relied on Au-
toregressive Integrated Moving Average (ARIMA) models,
which capture persistence, trends, and short-term seasonal
behaviour.® While suitable for relatively stable dynamics,
ARIMA suffers from limitations when confronted with the
nonlinear interactions typical of urban pollution, such as
rapid chemical transformations, sudden emission spikes,
or abrupt meteorological changes.

The emergence of machine learning brought new oppor-
tu- nities for handling these complexities. Models such as
Support Vector Regression (SVR) introduced the ability to
capture nonlinear pollutant—-meteorology relationships
through kernel functions, while ensemble techniques like
Random Forest gained popularity due to their robustness
to noise and their capacity to represent intricate feature
interactions without extensive manual feature engineering.
These methods demon- strated better predictive accuracy
compared to classical linear frameworks, particularly under
conditions of irregular emis- sions and heterogeneous pol-
lutant sources.? Recent studies have explored increasingly
complex architectures, including hybrid deep learning
models,! meteorology-integrated hy- brid frameworks,**°
and temporal graph networks,®> demonstrating the field’s
rapid evolution.

Motivated by these developments, this study provides a
comparative analysis of statistical methods (ARIMA, Proph-
et), non-linear machine learning algorithms (SVR, Random
For- est), and deep sequential models (LSTM). The goal is
to evaluate their relative strengths within a unified exper-
imental setup that reflects the high emission intensity,
meteorological variability, and severe seasonal pollution
cycles characteristic of Delhi.

Dataset and Preprocessing

The analysis draws on the Air Quality Data in India (2015—
2020),® which contains hourly records from national
monitoring stations managed by the Central Pollution
Control

Board (CPCB).” For this study, only Delhi-specific entries
are retained. Variables include AQl, AQl category, and
pollu- tant concentrations (PMZ_S, PM,,, NO, NO,, NO,,
NH,, CO, SO,, O,, Benzene, Toluene, and Xylene). These
indicators support both AQl forecasting and pollutant-spe-
cific modelling.

Key dataset attributes

e Datetime: Timestamp of measurement in hourly
resolutioin

e Pollutants: Major regulated pollutants relevant to AQl.

e AQIl: Computed overall index value.

e AQl Bucket: Category labels (e.g., Good, Moderate,
Poor).

Figures 1-3 summarise the underlying data patterns, in-
clud- ing distributional skewness, long-term cycles, and
pollutant interdependence.

LSTM forecasting architecture with look-back window L
and a dense readout layer. Hidden (h) and cell (c) states
propagate across time; the final hidden state feeds a

dense head to produce the one-step-ahead prediction y” ..

Experiments and Methodology
Experimental Setup

To ensure a fair and reproducible comparison across mod-
els, we designed a consistent evaluation framework. The
available dataset was divided chronologically, with 80% of
the records used exclusively for training and the remaining
20% reserved for testing. This forward-in-time split was
chosen to mimic realistic forecasting conditions and to
minimise the risk of information leakage between past
and future observations.

All algorithms were implemented in the Python ecosys-
tem using established libraries. The statistical baselines
were developed with the statsmodelsimplementation of
ARIMA and the prophet package for trend-seasonality de-
composition. For machine learning baselines, we employed
scikit-learnto train Support Vector Regression (SVR) and
Random Forest models. Sequential deep learning mod- els,
specifically Long Short-Term Memory (LSTM) networks,
were implemented using TensorFlow/Keras.

Model hyperparameters were tuned through a validation
subset carved out from the training split, allowing robust
opti- misation without contaminating the test data. This
ensures that performance metrics reported in the re-
sults section correspond strictly to unseen observations,
thereby providing a reliable assessment of each model’s
generalisation ability.

Evaluation Metrics

To quantitatively assess model performance, we employed
a set of widely accepted regression metrics:
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Mean Absolute Error (MAE)

MSE = 1= (vi
N

y
RMSE = asE ()]

LSTM Model Architecture

The Long Short-Term Memory (LSTM) network is designed
to capture temporal dependencies in sequential data. Its
archi- tecture is based on memory cells with input, forget,
and output gates. The update equations for each time
stept are:

f.=o(W,-[h_,,x]+b) (5)
i, =o(W,-[h_,x]+b) (6)
C't=tanh(W_-[h_,x]+b) (7)
c,=feC_+ioCt (8)
o,=o(W_-[h_,x]+b) (9)
h, =0, @ tanh(C) (10)

Here, x_is the input, h, the hidden state, C, the cell state,
othe sigmoid function, and © elementwise multiplication.

Results

The performance comparison of the different forecasting
models on the test dataset is summarised in Table I. The
findings reveal a clear ranking in predictive capability
across the model families. Traditional linear approaches
such as ARIMA and Prophet provide a useful point of
reference but fall short when confronted with the nonlinear
variability and abrupt fluctuations that characterise Delhi’s
air quality. Their reliance on stationary assumptions and
linear trend decomposition limits their adaptability to
sudden pollution surges.

Table I.Comparative Performance of Forecasting Mod-

els for pm2.5 and pm10 . Bold Values Indicate The Best

Scores Across Metrics

PM2.5 | 32.5 | 1850.2 | 43.0 | 0.75
ARIMA

PM,, |45.1| 31005 | 55.7 | 0.72

PM2.5 | 28.9 | 1540.7 | 39.2 | 0.80
Prophet

PM,  |40.2|2650.1 |51.5|0.78
SVR PM2.5 | 25.1 | 1210.3 | 34.8 | 0.85

PM_ | 356 |2100.8 | 45.8 | 0.83

PM2.5 | 18.2 | 850.6 | 29.1 | 0.91
LSTM

PM, | 25.8 | 1450.2 | 38.1 | 0.89

PM2.5 | 19.5| 920.4 | 30.3 | 0.89

Random Forest
PM_  |27.1|1580.9 | 39.8 | 0.88
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In contrast, machine learning and deep learning frameworks
show a marked enhancement in predictive accuracy. The
Random Forest model demonstrates notable skill, largely
due toits ensemble mechanism which aggregates multiple
decision trees. This structure enables it to capture complex
pollutant interactions, account for outliers, and generalise
well across diverse conditions. Support Vector Regression
also surpasses the linear baselines, thoughits kernel-based
learning still strug- gles to fully adapt under highly volatile
pollution episodes.

The Long Short-Term Memory (LSTM) architecture
consistently achieves the most reliable forecasts, with
the lowest error scores (MAE, RMSE) and the highest
R? values. Itsrecurrent structure and gating mechanisms
allow it to en- code temporal dependencies effectively,
learning both long- term seasonal cycles and short-lived
pollution spikes. The close alignment between LSTM
predictions and observed AQI trends further underscores
its robustness. The superior perfor- mance of the LSTM
network can be attributed to its recurrent architecture
and gating mechanism, which are specifically designed to
capture long-range temporal dependencies in time- series
data. Similarly, the Random Forest’s strong performance
stems from its ensemble nature, which reduces variance by
averaging multiple decision trees, makingit robust to noise
and effective at modeling complex interactions without
overfitting.

Overall, the comparative results emphasize that hybrid,
data- driven techniques—particularly those leveraging
sequential deep learning architectures—offer the greatest
promise for delivering accurate and stable AQI forecasts
in urban environ- ments marked by rapid variability and
multifactor influences.

Figure 7 highlights the distribution of prediction errors
across models, showing that the LSTM network achieves
the narrowest spread of residuals and the highest R? values
for both PM_ , and PM_ . The Random Forest model also
performs competitively, owing to its ensemble structure
which mitigates overfitting. A qualitative inspection of
LSTM fore- casts, presented in Fig. 6, shows close alignment
with observed time series, including during periods of
elevated pollution.

Model Uncertainty and Limitations

Despite the promising results, several factors introduce
uncertainty into the presented forecasting framework.
First, the air quality data used in this study are subject
to instrumental and sampling errors from ground-based
monitoring stations, which can propagate through model
training and evaluation. Additionally, spatial coverage
across Delhi is uneven—some monitoring sites may not
fully capture localised emission events, leading to potential
under representation of micro-scale variability.
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A second source of uncertainty arises from the temporal
resolution and missing data. Hourly records are occasionally
missing or interpolated, which may affect the model’s ability
to learn transient pollution spikes. Although preprocessing
techniques such as normalisation and outlier handling were
applied, residual data inconsistencies remain a source of
model uncertainty.

From the modelling perspective, algorithmic bias and
hyperparameter sensitivity contribute to performance
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vari- ability. While Random Forest and LSTM models exhibit
strong generalisation, their forecasts depend heavily on
architecture depth, look-back window size, and feature
scaling strategy. The absence of meteorological covariates
such as wind speed, humidity, and temperature further
limits interpretability under changing weather regimes.
Future extensions should include these physical drivers and
perform ensemble calibration to better quantify prediction
confidence intervals.
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Figure |.Exploratory Data Analysis (EDA) of Delhi’s AQI dataset. The plots illustrate raw and log-normalized pol-
lutant distributions, highlighting skewed patterns and heavy-tailed behavior typical of urban particulate data (units

in yg m-3)
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Figure 2.Time series of PM2.5 and PM10 concentrations in Delhi (2015-2020), showing seasonal cycles and ex-
treme pollution episodes (units in g m—3)
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Correlation Heatmap: Selected Pollutants
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Figure 3.Correlation structure between pollutants and AQI in Delhi, indicating strong positive association of AQI
with particulate matter (PM2.5, PM10) and moderate links with gaseous pollutants.
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Figure 4.Pairwise relationships between key pollutants. This visualization helps in identifying multicollinearity and
understanding feature interactions and distributions across all considered variables
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Figure 5.LSTM forecasting architecture with look-back window L and a dense readout layer. Hidden (h) and cell (c)
states propagate across time; the final hidden state feeds a dense head to produce the one-step-ahead prediction

y't+1

|80 1 — Actual
E .
5 —— Predicted
=600 1
1S
=
=
400
=
1S
©
18]
1200
=
-

ol

(I) 20‘00 40I00 60‘00 80‘00 10600
Time Steps

Figure 6.Actual vs. Predicted values for the LSTM model on the PM2.5 time series.
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Figure 7.Comparative boxplot of RMSE distributions for each model
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Conclusion

This study carried out a comprehensive comparison of
mul- tiple forecasting strategies for Delhi’s air quality,
examining statistical baselines, machine learning regres-
sors, and deep learning sequence models. The evaluation
results demonstrated a clear performance hierarchy. As
shownin Tablel, traditional methods such as ARIMA and
Prophet achieved R? values between 0.72 and 0.80, with
relatively high error magnitudes (MAE 30-45). While these
approaches provided useful baselines, they were unable
to capture abrupt pollution spikes or complex nonlinear
interactions.

Machine learning models offered substantial improve-
ments. Support Vector Regression reduced MAE to 25.1
forPM, . and

35.6for PM, , while Random Forest achieved even lower er-
ror scores (MAE 19.5 for PM, , and 27.1 for PM_ ), reflecting
the benefits of ensemble learning in handling heterogeneity
and noise. The best results, however, were obtained from
the Long Short-Term Memory (LSTM) network, which
reached MAE of 18.2 (PM, ) and 25.8 (PM_ ), with R* val-
ues above 0.89. These findings confirm the advantage of
recurrentarchitectures in modeling both gradual seasonal
cycles and sudden high- intensity events.

The exploratory data analysis phase proved instrumen-
tal in shaping the modelling pipeline. Identifying skewed
pollu- tant distributions, seasonal variability, and strong
correlations between AQl and particulate matter justified
the use of nor- malisation, variance-stabilising transfor-
mations, and temporal feature engineering. These steps
ensured consistent model performance and avoided bias
from heavy-tailed distributions.

Looking ahead, several extensions could enhance the predic-
tive framework. Incorporating meteorological variables
such as temperature, wind patterns, and humidity may
improve early detection of sudden regime shifts.* Inte-
grating multi-station data across Delhi would allow for
spatially resolved forecast- ing, highlighting local hotspots.
Moreover, recent advances in attention-based recurrent
networks, graph neural networks, and transformer-based
models offer promising directions for longer-horizon fore-
casts and enhanced interpretability.®

In summary, the study highlights that while statistical
mod- els provide useful benchmarks, machine learning
and espe- cially deep recurrent networks deliver superior
accuracy and robustness. These findings reinforce the
potential of hybrid, data-driven forecasting systems to
support evidence-based policy-making and timely public
advisories in cities facing persistent air quality challenges.

From a policy perspective, the proposed framework can
serve as a foundational tool for municipal and regional
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au- thorities. By integrating such predictive models into
air-quality monitoring networks, agencies like the CPCB
and Delhi Pol- lution Control Committee (DPCC) could
issue more accurate early warnings, dynamically adjust
traffic management or industrial operations, and design
localised emission-control measures. Furthermore, cou-
pling model outputs with low-cost IoT sensor networks
and citizen-science data could enhance spatial coverage,
improve transparency, and support data- driven environ-
mental governance. In the long term, such op- erational
forecasting systems would facilitate proactive rather than
reactive responses to pollution episodes, improving both
public health outcomes and regulatory efficiency.
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