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Climate volatility amplifies smallholder decision uncertainty in India, 
influencing when and what to plant. Purely data-driven advisories often 
fail due to behavioural barriers such as loss aversion, default bias, and 
limited foresight. This paper proposes a Behavioural-Aware Decision 
Support System (BDSS) that integrates behavioural economics principles 
into an intelligent recommendation architecture. The model combines 
climate prediction, IoT sensor data, and behavioural models to optimise 
adaptive recommendations. A multi-agent simulation with 200 virtual 
farmers and ten growing seasons demonstrates that BDSS improves 
adoption of climate-smart practices by 18%, reduces water usage by 
10%, and lowers yield variance by 12% compared to a standard DSS. 
The study highlights how embedding behavioural mechanisms in DSS 
can bridge the gap between information availability and farmer action, 
fostering sustainable and climate-resilient agriculture.
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Introduction
Climate change–induced variability disrupts traditional 
agricultural decision cycles and increases uncertainty in 
both short- and long-term planning. Smallholder farmers, 
operating under resource constraints, frequently rely on 
experiential heuristics rather than data-driven forecasts. 
This makes them susceptible to behavioural biases such as 
status-quo preference, myopic loss aversion, and present 
bias.1–3 While Decision Support Systems (DSS) can convert 
complex climate data into actionable insights, adoption 
remains limited unless the systems also account for human 
decision patterns. Integrating behavioural economics within 
intelligent DSS frameworks can bridge this adoption gap, 
enabling systems that not only inform but also motivate 
action.

This paper contributes threefold: 

•	 it proposes a hybrid architecture that unites behavioural 
models with intelligent DSS components; 

•	 it develops a simulation framework that quantifies 
behavioural impacts on adaptive agricultural decisions; 
and 

•	 it provides policy and design insights for scaling such 
behaviour-aware DSS in developing economies like 
India.

Related Work
Behavioural economics has gained notable attention in 
agricultural sustainability and resource management. 
Studies in Haryana1 demonstrated that social-comparison 
messaging reduced irrigation water use by 22%, validating 
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the power of low-cost behavioural nudges. Conversely, 
a large-scale conservation experiment in Sweden found 
limited impact of generic nudges2, underscoring that 
behavioural interventions must be context-specific.

Traditional DSSs such as CAMDT4 and LandCaRe5 combine 
crop simulation and climate forecasts but lack human-
centred design. The Soil Navigator DSS6 and recent AI-
enabled systems7 incorporate multi-criteria optimisation for 
soil and crop management. However, they remain largely 
prescriptive, assuming perfect rationality. Integrating 
behavioural feedback with adaptive intelligence is a 
relatively new frontier, with early explorations in AI-based 
agro-advisory systems.8

Proposed BDSS Architecture
The proposed Behavioural-Aware Decision Support 
System (BDSS) integrates climate prediction, behavioural 
economics, and machine intelligence. It consists of three 
core layers: Data and Prediction, Behavioural Engine, and 
Recommendation with Feedback.

Data and Prediction Layer

This layer aggregates real-time climate forecasts, remote-
sensing data, IoT-based soil and weather sensors, and 
crop growth models (e.g., DSSAT or APSIM). These inputs 
generate probabilistic estimates of yield and resource 
trade-offs under multiple management strategies. Each 
simulated farmer-agent is characterised by parameters 
representing risk aversion (γ), ambiguity aversion (α), and 
time-discounting (β), forming a behavioural profile that 
conditions responses to recommendations.

Behavioural Engine

The behavioural engine models bounded rationality through 
reinforcement of decision heuristics. Four behavioural 
interventions are implemented:

•	 Default framing: climate-smart varieties are set as 
default options in the decision interface.

•	 Loss framing: outcomes emphasize potential yield 
or income losses avoided under adaptive strategies.

•	 Social-norm cues: feedback displays local peer adoption 
rates, enhancing perceived collective validation.

•	 Commitment prompts: digital reminders via SMS or 
mobile apps reinforce previously expressed intentions.

An adaptive contextual multi-armed bandit algorithm learns 
which nudge type yields the highest adoption probability 
given farmer context (γ, α, β) and environmental conditions.

Recommendation and Feedback Layer

At each decision round, candidate management strategies 
are evaluated using a hybrid utility model:

where  denotes yield, production cost,  yield variance, and κ 
the risk-weight coefficient. Here, E[·] denotes the expected 
utility evaluated over the probabilistic distribution of yield 
outcomes under strategy j, capturing uncertainty driven 
by climate variability and management conditions. The 
behavioral engine adjusts perceived utilities using cognitive 
weighting functions, modifying  according to framing and 
nudge type. The top-ranked recommendation is presented 
to the agent, and subsequent adoption or rejection updates 
the contextual policy.

 Figure 1.Schematic of the Behavioral-Aware Decision 
Support System (BDSS) showing interaction among 
prediction, behavioral, and recommendation layers

Simulation Design

A stochastic multi-agent simulation was implemented 
in Python to evaluate BDSS under realistic agricultural 
uncertainty. A total of 200 heterogeneous farmer-agents 
were generated, each with distinct behavioral and agro-
ecological characteristics representing a semi-arid Indian 
district. The simulation spans ten agricultural seasons, 
capturing inter-annual variability in rainfall, temperature, 
and market conditions.

Each agent interacts with one of three system configurations: 

•	 No DSS (Baseline): farmers rely solely on traditional 
heuristics and experiential rules; 

•	 Standard DSS: agents receive purely data-driven 
recommendations based on expected yield and cost; 

•	 Behavioural DSS (BDSS): combines data-driven 
predictions with adaptive behavioral interventions.

At each time step t, agent i chooses an action  based on 
the perceived utility difference and behavioral influence 
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Environmental variables such as rainfall, evapotranspiration, 
and soil moisture are sampled from historical probability 
distributions calibrated with IMD and ICAR data. Yield 
outcomes are simulated through linearised crop-response 
functions embedded within the DSS.9

Feedback mechanisms update each agent’s belief vector 
through Bayesian revision:

where λ represents the learning rate and  is the observed 
payoff realisation (e.g., actual yield, cost, satisfaction). 
These updates influence subsequent adoption probabilities, 
capturing behavioural learning dynamics across seasons.

To test robustness, Monte Carlo experiments (100 
replicates) were run varying climate variability, risk weights, 
and nudge effectiveness parameters. Key performance 
metrics included: 

•	 cumulative adoption rate, 
•	 normalised water consumption, 
•	 yield variance, and 
•	 expected utility gain relative to baseline.

Results and Discussion

Adoption Dynamics

The simulation results demonstrate clear behavioural 
divergence between system configurations. BDSS achieved 
a mean adoption of 58.4%, compared with 46.0% for the 
Standard DSS and 31.2% in the baseline (no DSS) scenario. 
The steady increase in adoption under BDSS arises from 
adaptive nudging—the behavioral engine progressively 
learns which message framing (social-norm, loss-based, 
or default framing) resonates most strongly with each 
farmer profile.

Resource Efficiency and Yield Stability

Water use decreased by an average of 10.4% in BDSS 
compared to the baseline, while yield variance declined 
by roughly 12%. Both improvements stem from improved 
adherence to adaptive sowing schedules and irrigation 
timing promoted through the behavioural engine.

 Figure 2.Adoption rate over ten seasons 
under different DSS configurations. The BDSS 

demonstrates accelerated adoption due to 
reinforcement learning and personalized nudges

Metric No DSS Standard DSS BDSS
Adoption (%) 31.2 46.0 58.4
Water Use (% 

baseline) 100.0 92.1 82.6

Yield Variance 
(normalized) 1.00 0.89 0.78

Expected Utility 
Gain 0 +0.045 +0.072

 Table 1.Summary of Simulation Outcomes across 
Configurations (Averaged over 100 runs)

Learning Dynamics within the Behavioral Engine

Initially, all four nudge types (default, social, loss, 
commitment) are deployed uniformly. By the sixth season, 
the algorithm learns that social-norm and loss-framed 
messages yield the highest marginal impact among 
risk-averse farmers, accounting jointly for over 70% of 
all interventions. This adaptive redistribution of nudge 
weight demonstrates the model’s capability to self-optimise 
behavioural targeting strategies over time.

 Figure 3.Temporal evolution of nudge-type selection 
by the behavioral engine using contextual bandit 

learning
Sensitivity and Robustness Analysis

Sensitivity analysis quantifies the relative influence of six 
key variables: climate variability, risk aversion (γ), ambiguity 
aversion (α), present bias (β), nudge effectiveness, and 
forecast accuracy. BDSS consistently outperforms other 
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systems across all perturbations. Climate volatility and 
behavioral discounting emerge as dominant drivers, 
jointly explaining over 60% of adoption variance across 
simulations. Even when nudge effectiveness is reduced by 
50%, BDSS maintains a statistically significant advantage 
(p < 0.05) over the Standard DSS in adoption and water-
use efficiency.

•	 Capacity Building: train agricultural extension officers 
to interpret behavioural analytics outputs, enabling 
human–AI collaboration in advisory delivery.10

Conclusion

This paper presented a simulation-based assessment of 
a Behavioural-Aware Decision Support System (BDSS) 
that integrates behavioural economics with intelligent 
predictive analytics for climate-resilient agriculture. The 
framework demonstrates how adaptive nudging can 
systematically enhance technology adoption, improve 
water-use efficiency, and stabilise yields under climate 
uncertainty.

Simulation results confirm that embedding behavioural 
feedback loops in DSS can achieve a 15–20% higher 
adoption rate and measurable resource savings relative 
to purely data-driven advisories. The BDSS thus bridges the 
“last-mile” gap between climate information dissemination 
and behavioural action.

Future work will focus on field validation with live pilot 
deployments, integration of reinforcement learning for 
co-evolution of behavioural and predictive layers, and 
expansion to incorporate social network diffusion and 
gender-based adoption heterogeneity.
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Comparative Insights with Prior Work
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designs, positioning BDSS as a step toward “Behavioural-AI 
co-evolution” for sustainable agriculture.

Policy Implications

For large-scale implementation in India, BDSS should be 
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recommendation logic to maintain farmer trust.

•	 Inclusivity through Multi-Channel Delivery: combine 
smartphone apps, SMS, and IVR voice interfaces to 
extend reach to low-digital-literacy farmers; hybrid 
dissemination can mitigate digital divides while 
sustaining engagement.
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