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ABSTRACT

Earthquakes are among the most unpredictable and destructive natural
disasters, causing massive loss of life and property across the globe.
Accurate seismic prediction has long been a major scientific challenge
due to the complex and nonlinear nature of tectonic processes. In this
study, machine learning techniques are applied to analyse historical
earthquake data from California to predict the magnitude and probability
of future seismic events. The dataset used consists of earthquake
records with a magnitude of 3.0 or higher, including parameters such
as latitude, longitude, depth, number of seismic stations, and time of
occurrence. Various machine learning algorithms — including Linear
Regression, Multiple Linear Regression, Decision Tree Regressor,
K-Nearest Neighbours (KNN), Support Vector Machine (SVM), Naive
Bayes, and K-Means Clustering — were implemented and compared
to evaluate their predictive performance. The results demonstrate
that machine learning models can effectively capture hidden patterns
within seismic data and provide reliable magnitude predictions. Among
the tested models, regression-based approaches and SVM showed the
best accuracy and consistency. This research highlights the potential
of data-driven models in enhancing earthquake forecasting systems,
supporting early warning mechanisms, and contributing to disaster
risk reduction.

Keywords: Machine Learning K-Nearest Neighbors, Support Vector
Machine, Naive Bayes, K-Means Clustering

Introduction

have limited predictive capability due to the complex and
nonlinear nature of tectonic movements.

Earthquakes are among the most unpredictable and
devastating natural disasters on Earth, often resulting in
severe damage to infrastructure, loss of life, and long-term
socio-economic impacts. The ability to accurately predict
seismic activity has been one of the greatest challenges
for scientists and engineers. Traditional methods, which
rely mainly on geological and seismological observations,

In recent years, the integration of machine learning (ML)
and data-driven modelling has opened new possibilities in
seismic prediction. By analysing large datasets containing
information about past earthquake events, ML algorithms
can identify hidden patterns and correlations that might not
be apparent through conventional analysis. These insights
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can be used to estimate earthquake magnitudes,® identify
high-risk regions, and support early warning systems that
could save lives and reduce damage.

This research focuses on predicting earthquake magnitude
and probability using machine learning models trained
on California’s earthquake data. The dataset includes
critical attributes such as latitude, longitude, depth, number
of recording stations, and other seismic parameters. By
applying various algorithms—such as Linear Regression,
Decision Trees, K-Nearest Neighbours (KNN), Support Vector
Machines (SVM), Naive Bayes, and K-Means Clustering—
this aims to compare and evaluate their performance in
predicting seismic activity. Ultimately, this study seeks to
demonstrate how data preprocessing, feature selection,
and algorithmic learning can enhance our understanding
of earthquake behaviour and contribute to more accurate
and timely seismic risk assessment.?34

Implementation
Dataset

The Earthquake dataset is used and it contains information
about earthquakes that have occurred with a magnitude
of 3.0 or greater in California, United States.The dataset
contains earthquake events from January 2, 2017, to
December 31, 2019, which includes a total of 37,706
earthquakes.>®

Each row in the dataset represents a single earthquake
event and includes the following information:

e Latitude / Longitude: The geographic coordinates of
the earthquake’s epicenter.

e Depth: How far underground the earthquake started
(in kilometers).

e Mag: The magnitude (strength) of the earthquake,
which we used as your main target for prediction.

e Nst: The Number of Stations that recorded the earth-
quake. More stations generally mean a more reliable
measurement.

e Date(YYYY/MM/DD) / Time: When the earthquake
occurred.

e Magt: Magnitude Type (e.g., ‘ML, ‘Mw’, ‘Mx’), indi-
cating the method used to calculate the magnitude.

e Gap: The largest angular gap between the seismic
stations. A smaller ‘Gap’ number means the location
is more accurate.

e Clo: Likely means the Distance to the Closest Station.
RMS: A technical value (Root Mean Square) that shows
how well the data “fits” the earthquake’s calculated
location. A lower RMS is better.

e SRC: The Source or seismic network that reported the
event (e.g., ‘NCSN’ for Northern California Seismic
Network).

e EventlID: A unique ID number for each earthquake.

Data preprocessing

Data preprocessing is the process of cleaning, transforming,
and preparing raw data before feeding it into a machine
learning model.”®

Column Cleaning

e  Whitespace was stripped from the beginning and end
of all column names.

Handling Missing Values (Imputation)

e Numerical Imputation:Filled all missing values in
numerical columns (like ‘Depth’ or ‘Nst’) with the
mean (average) value of that column.

e Categorical Imputation:Filled all missing values in
object/text columns with the mode (most frequent
value) of that column.

Feature Scaling

e Formodels like SVR, Logistic Regression, and Clustering,
we used StandardScaler.

e Thissteprescales features (like ‘Latitude’, ‘Longitude’,
‘Depth’) to have a mean of 0 and a standard deviation
of 1.

As there are no null values present in Earthquake
Database, so there are no changes in before and after
data preprocessing as shown in fig.2.

Dataset before preprocessing:
Date(YYYY/MM/DD) Time Latitude Longitude Depth Mag Magt Nst Gap Clo RMS SRC EventID

1966/67/01 ©9:41:21.82  35.9463 -120.4700 12.26 3. 7 171 20 0.82 NCSN -4540462

1966/67/62 12:08:34.25 35.7867 -120.3265  8.99 M< 8  8G 3 0.04 NCSN -4540520
1966/07/02 12:16:14.95  35.7928 -120.3353 9.88
1966/07/02 12:25:06.12  35.7976 -120.3282  9.09
1966/07/05 18:54:54.36  35.9223 -120.4585 7.86
1066/67/27 ©8:12:00.26  35.9103 -120.4397  8.02
1966/08/03 12:39:05.79  35.8137 -120.3527 6.59
1966/08/07 17:03:24.14  35.9380 -120.4568 11.76
1966/08/19 22:51:20.04  35.9146 -120.4272  1.67
1966/09/07 ©0:20:52.12  36.0032 -120.0317 10.61

Mx 8 89 2 0.03 NCSN -4540521
Mx 8 101 3 0.08 NCSN -4540522
Mx 9 161 14 .04 NCSN -4540594

Mx 10 158 12 .02 NCSN -1510837
Mx 10 131 2 0.05 NCSN -4540891
Mx 11 153 19 0.04 NCSN -4540922

Mx 6 165 11 0.10 NCSN -4540969
Mx 13 258 27 0.14 NCSN -4541046
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Figure |.Before Preprocessing
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Dataset after preprocessing:
Date (YYYY/M1/DD) Time Latitude Longitude Depth
1966/07/01 €9:41:21.82  35.9463 -120.4700 12.26
1966/07/02 12:@8:34.25 35.7867 -120.3265 8.99
1966/07/62 12:16:14.95  35.7928 -120.3353 9.88
1966/07/02 12:25:06.12 35.797@ -120.3282 9.09
1966/07/05 18:54:54.36 35.9223 -120.4585 7.86
1966/07/27 ©8:12:90.26  35.9103 -120.4397 8.02
1966/08/03 12:39:05.79  35.8137 -120.3527  6.59
1966/08/07 17:03:24.14 35.9380 -120.4568 11.76
1966/08/19 22:51:20.04 35.9140 -120.4272 1.67
1966/09/07 00:20:52.12  36.0032 -120.6317 10.61

Mag Magt Nst Gap Clo RMS SRC EventID
2 Mx 7 171 20 ©.02 NCSN -4540462
Mx 8 86
Mx 8 8
Mx 8 101
Mx 9 161 14 ©.94 NCSN -4548594
Mx 10 158 12 9.02 NCSN -4540837
Mx 16 131 2 ©.05 NCSN -4540891
Mx 11 153 19 0.04 NCSN -4540922
Mx 6 165 11 0.18 NCSN -4548969
Mx 13 358 27 0.14 NCSN -4541046

3 9.04 NCSN -4540520
2 9.03 NCSN -4540521
3 9.08 NCSN -4540522
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Figure 2.After Preprocessing
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Linear Regression

Linear Regression is a machine learning algorithm used
to predict a continuous numerical value (like earthquake
magnitude). It works by finding the “best-fit” straight line
(or plane) that describes the relationship between a set
of input features (predictors) and an output variable.>%°

This model predicts the output using only one input feature.

e Input Feature (X): Depth
e Output Variable (y): Mag

R? Score: ©.0023
MSE: ©.1816
RMSE: ©.4261

Simple Linear Regression Model

. ® Actual Data
—— Regression Line

Magnitude

Depth (km)

Figure 3.Linear Regression

Multiple Linear Regression

Multiple Linear Regression is a machine learning algorithm
used to predict a continuous numerical value (like
‘Magnitude’).It’s an extension of Simple Linear Regression.
Instead of using just one input feature to make a prediction,
it uses two or more input features. The goal is to find a single
equation that combines the predictive power of all those
features, weighting each one based on its importance.!

This model predicts the output using multiple input features
at the same time.

o Input Features (X): Latitude, Longitude, Depth, Nst
e  Output Variable (y): Mag

RT Score: 0.0350
MSE: ©.1756
RMSE: @.4191

Multiple Linear Regression Model

o

w

Magnitude

.

s Latitude(deg)
Longitude(deg)
Depthikm)

*  No_of Stations

-100 o 100 200 300
Predictor Variables

Figure 4.Multiple Linear Regression
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Decision Tree

A Decision Tree is one of the most popular and easy-to-
understand machine learning algorithms. It’s a flowchart-
like structure where each:

Internal node represents a “test” or “question” on a

feature (e.g., “Is Depth < 8.5 km?”).

Branch represents the outcome of the test (“Yes” or

“No”).

e Leaf node represents the final prediction (e.g.,
“Magnitude = 3.8").

A tree “learns” by finding the best way to split the data.
This process is called recursive partitioning.

Figure 5.Decision Tree

KNN

K-Nearest Neighbours (KNN) is a machine learning algorithm
that makes predictions based on the ‘K’ most similar data
points (neighbours) it has already seen.

We used the K Neighbours Regressor version. This means
we used KNN to predict a continuous number (the Mag).

Here is exactly how KNN code worked:

¢  Find Neighbours: When ask it to predict the magnitude
of a new earthquake, the model searched through its
training data to find the ‘K’ earthquakes that were
most “similar” based on your four features: Latitude,
Longitude, Depth, and Nst.

e Set ‘K’ Value: In your code, we set K=3 (using n_
neighbours=3).

e Average the Neighbours: The model found the 3 most
similar earthquakes, looked at their Mag values, and
averaged them to get the final prediction.*?

K-Nearest Neighbours (KNN) is a simple and intuitive
machine learning algorithm. The main idea is: “You can
guess what something is by looking at the things most
similar to it.”

It works by finding the “K” closest data points (the
“neighbors”) to a new, unknown data point. It then uses
those neighbors to make a prediction.
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or [34.05, -118.25, 10.0, 25.0] = 3.250
KNN Regression: Magnitude Prediction

e Predicted vs Actual
@ New prediction

Figure 6.KNN
SVM (Support Vector Machine)

SVMis a powerful and versatile machine learning algorithm
used for both classification and regression. The main idea
behind SVM is to find the “best” boundary that separates
or fits the data.

SVM for Classification (SVC)

This is the most common use. SVM finds the optimal line (or
“hyperplane” in higher dimensions) that best separates the
data into different classes (e.g., ‘Low’ vs. ‘High” magnitude).
It's not just any line; it’s the specific line that creates the
maximum possible margin (distance) between itself and
the closest data points from each class. This large margin
makes the model robust.

SVM for Regression (SVR)

It's the opposite of the classifier. Instead of finding a line
to separate classes, SVR finds the best-fit line that allows
for a certain amount of error (a “margin” or “tube”). It tries
to fit as many data points as possible inside this tube. The
SVR model tried to find a boundary that contained most
of the (Latitude, Longitude, Depth) data points to predict
their Mag.1

== perfect Prediction

30 3s 4.0 55 6.0 65

as o
Actual Magnitude (y_test)

Figure 7.SVR

Naive Baye’s

Naive Bayes is a classification algorithm based on probability.
It's used to predict which category an item belongs to.

Its main idea is: “What is the probability that this earthquake
belongs to the ‘High’ magnitude class, given its Latitude,

Depth, and Nst?”

e How it Works: It calculates the probability of each class
(e.g., ‘Low’, ‘Medium’, ‘High’) based on the features.
It then picks the class with the highest probability.

e  Why “Naive”? It makes a “naive” assumption that all
the features are independent of each other (e.g., that
Depth has no relationship to Latitude). Even though
this isn’t usually true, the algorithm is surprisingly
effective and very fast.

A Confusion Matrix is a table that shows exactly how well
your classification model performed. It “confuses” the
model’s predictions with the actual truth.

e True Positive (TP): The model correctly predicted the
class. (It said ‘Low’ and it was ‘Low’). These are the
numbers on the diagonal.

e False Positive (FP): The model predicted a class, but it
was wrong. (It said ‘High’, but it was actually ‘Low’).

e False Negative (FN): The model failed to predict a class.
(It said ‘Low’, but it was actually ‘High’).

Precision: The “Accuracy of Predictions”

Precision tells you: Of all the times the model predicted a
certain class, what percentage was correct?

e Earthquake Example: A precision of 90% for the ‘High’
class means: “When my model predicted an earthquake
was ‘High” magnitude, it was right 90% of the time.”

e High Precision is good if you want to be very sure about
your predictions.

Recall: The “Completeness of Predictions”

Recall tells you: Of all the actual items in a certain class,
what percentage did the model find?

e Earthquake Example: A recall of 70% for the ‘High’
class means: “Of all the ‘High” magnitude earthquakes
that actually happened, my model successfully found
70% of them.”

e High Recall is good if you want to make sure you
find as many instances of a class as possible (e.g.,
it’s very important to not miss any ‘High’ magnitude
earthquakes).

Mag_Class

Low 16296

Medium 1581

High 153

Name: count, dtype: int64

Gaussian Naive Bayes Accuracy: ©.8871

Classification Report:

precision recall fl-score support

High 8.14 0.13 9.14 31

Low 9.91 0.97 9.94 3259

Medium 8.22 0.86 8.18 316
accuracy @.89 3606
macro avg 8.42 8.39 8.39 3606
weighted avg 08.84 0.89 .86 3606

Figure 8.Precision, recall and fl-score
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Gaussian Naive Bayes Confusion Matrix
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Figure 9.Confusion matrix

Actual Magnitude Category

2

Latitude

32

-128 -126 -124 =122 -120 -118 -116 -114 =112
Longitude

Figure 10.Naive Bayes Actual
Predicted Magnitude Category

Latitude

. — —- - T . - T- ~
-128 -126 -124 -122 -120 -118 -116 -114 -112

Longitude

Figure | |.Naive Bayes Predicted
K-Means clustering

K-Means clustering is an algorithm that groups data points
into a specified number of clusters (called ‘K’).

It works by finding “centers” (centroids) for each group
and assigning each data point to the nearest center. For

ISSN: 2455-3093
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our data, this is useful for finding geographic “hotspots”
of earthquake activity.

Here is the code to run K-Means. We must choose the
number of clusters we want to find. | have set K=4 as a
starting example, but can change this number.**

“n

The algorithm will categorise the items into “” groups or
clusters of similarity. To calculate that similarity we will use
the Euclidean distance as a measurement. The algorithm
works as follows:

1. Initialisation: We begin by randomly selecting k cluster
centroids.

2. Assignment Step: Each data point is assigned to the
nearest centroid, forming clusters.

3. Update Step: After the assignment, we recalculate
the centroid of each cluster by averaging the points
within it.

4. Repeat: This process repeats until the centroids no
longer change or the maximum number of iterations
is reached.?

K-Means Clustering of Earthquakes (K=4)

Cluster

o . 0

. e 1
. 2
3

42

Latitude

u T
=128 =126 =124 =122 =120 =118 =116 =114 =112
Longitude

Figure 12.K-Means Clustering
Discussion

The results obtained from the implemented machine
learning models demonstrate that earthquake magnitude
prediction can be significantly improved using data-driven
approaches. Regression-based models such as Linear
Regression and Multiple Linear Regression performed well
when strong linear relationships were present between
features like depth, latitude, longitude, and the number of
seismic stations. However, their performance was limited
in cases where patterns were nonlinear or influenced
by multiple interacting factors, which is consistent with
previous studies that emphasized the complex nature of
seismic behavior.
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Models such as Decision Trees and KNN showed improved
flexibility due to their ability to capture nonlinear patterns.
KNN, in particular, provided reasonable predictions,
especially when the nearest neighbours had similar
geological characteristics. Support Vector Regression (SVR)
demonstrated strong generalisation capability, supporting
the claims made by recent research that SVM-based models
perform well in seismic prediction tasks due to their margin-
based learning and robustness against noise.

Naive Bayes was used for the classification of earthquake
magnitudes into categories and achieved decent
performance in identifying low and medium-level
magnitudes. However, it struggled with high-magnitude
events due to the imbalanced dataset and the algorithm’s
independence assumption between features, which may
not hold true in seismic data.

K-Means clustering helped identify spatial regions with
higher seismic activity, which aligns with the patterns
reported in California and other tectonically active zones.
The clustering results reinforce how unsupervised learning
can complement supervised approaches by uncovering
hidden structure in geo-spatial earthquake distributions.

Overall, the findings highlight that no single algorithm is
universally optimal for earthquake prediction. Instead, the
combination of regression, classification, and clustering
techniques provides a more comprehensive understanding
of seismic patterns. This multi-model approach aligns well
with recent research trends that emphasize hybrid and
ensemble ML techniques to enhance prediction reliability.

Table |.Comparative analysis of number of models that have been used

Model Type Ability to Capture Stability Accuracy Remarks / Performance
Patterns Level Summary
. . Works only when
Linear . Low (only linear . . L
. Regression High Low relationship is linear; least
Regression trends)
accurate.
Multiole Linear Better than simple LR but
P . Regression Moderate High Moderate still weak with nonlinear
Regression
data.
Decision Tree Tree-based ngh (captur_es Medium Moderate Good mterpretab.lll.ty but
Regressor nonlinear splits) prone to overfitting.
Performs well when
KNN R . . . Moderate— .
CEressOr | pistance-based High Medium © gra € data points have close
(k=3) High o
similarity.
SVR (Support Most accurate model;
Vector Kernel-based Very High Very High | High (Best) | robust, handles nonlinear
Regression) patterns effectively.
Good for classifying low/
Naive F.s'?‘yes Probabilistic Medium High Moderate medium magnltu.des;
Classifier struggles with high-
magnitude events.
Not for prediction; useful
K-Means . . . o L
. Unsupervised N/A High N/A for identifying seismic
Clustering
hotspots.
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Best model identified is Support Vector Regression (SVR)
which achieved the highest accuracy and overall best
performance among all models.

It effectively captured nonlinear seismic patterns and
produced stable magnitude predictions.

Conclusion

This study provides a comparative analysis of various
machine learning approaches for predicting earthquake
magnitude using historical seismic data from California.
By evaluating models such as Linear Regression, Multiple
Linear Regression, Decision Tree, KNN, SVM, Naive Bayes,
and K-Means Clustering, we found that ML-based methods
can effectively capture patterns in earthquake data and
offer improved prediction accuracy compared to traditional
observational techniques.

Regression models and SVR emerged as strong predictors
of earthquake magnitude, while classification-based
approaches such as Naive Bayes helped categorise seismic
events, though with limitations for high-magnitude
prediction. Clustering analysis further revealed meaningful
patterns in the spatial distribution of earthquakes,
demonstrating the value of unsupervised learning in seismic
risk assessment.

The study confirms that machine learning can serve as
a powerful tool for enhancing seismic monitoring and
early warning systems. Although accurate short-term
earthquake prediction remains a major scientific challenge,
ML-driven models significantly contribute to risk reduction
by identifying trends, hotspots, and probability estimates
of seismic events. Future research can be directed toward
hybrid models, deep learning architectures, integration of
real-time sensor data, and ensemble techniques to further
increase the reliability of seismic forecasts.
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