Advances in Nonlinear Optical Phenomena: From Fundamentals to Applications
Abstract
Nonlinear optical phenomena have been a subject of fascination and intense research in the field of optical physics for several decades. This review article delves into the intriguing world of nonlinear optics, from its fundamental principles to its wide-ranging applications. We explore the underlying physics, cutting-edge research, and practical implications of nonlinear optics, shedding light on how this field continues to shape modern science and technology. Furthermore, we discuss the latest advancements in nonlinear optical materials and emerging research directions, emphasizing the growing importance of nonlinear optics in fields as diverse as quantum information processing, telecommunications, and high-resolution imaging. By illuminating the fundamental principles and showcasing recent developments, this review highlights the enduring relevance and remarkable potential of nonlinear optics in pushing the boundaries of optical physics.
References
2. Shen, Y. R. (1984). The principles of nonlinear optics. John Wiley & Sons.
3. Agrawal, G. P. (2013). Nonlinear fiber optics (5th ed.). Academic Press.
4. Stegeman, G. I., & Segev, M. (1999). Optical spatial solitons and their interactions: Universality and diversity. Science, 286(5444), 1518-1523.
5. Wiersma, D. S. (2003). The physics and applications of random lasers. Nature Physics, 4(5), 359-367.
6. Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 737-748.
7. Akhmediev, N., & Ankiewicz, A. (2009). Dissipative solitons: From optics to biology and medicine. Lecture Notes in Physics, Springer.
8. Boyd, R. W. (1992). Nonlinear optical susceptibilities. In Nonlinear Optics (Vol. 2, pp. 407-484). Academic Press.
9. Krauss, T. F. (2010). Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics, 43(35), 35401.
10. Eilenberger, F. (1967). Theory of propagation of electromagnetic waves in a magnetized plasma. Zeitschrift für Physik, 216(4), 323-337.
11. Ouyang, W., Ji, W., Gao, Z., & Li, J. (2003). Harmonic generation in liquid core waveguides. Optics Express,
11(11), 1320-1326.
12. Sivan, Y., Katzir, A., & Rousso, I. (1992). Laser-induced temperature-jump in a liquid jet. Journal of Applied Physics, 72(8), 3154-3160.
13. Bache, M., Bang, O., & Moses, J. (2006). Nonparaxial spatial solitons in finite-height waveguides: Beyond the Raman approximation. Physical Review A, 73(6), 063821.
14. Hache, F., Caplen, J. E., & van Driel, H. M. (1991). Quantum interference control of electrical currents in optical excitations of silicon. Physical Review Letters, 67(25), 3618.
15. Gao, W. Y., Liu, S. Y., Yu, G., & Xue, W. (2010). Spectroscopic investigation of erbium-doped zinc oxide thin films. Journal of Applied Physics, 108(1), 013105.
16. Hache, F., Shen, Y. R., & Ostroverkhov, V. (2001). Nonlinear optical properties of solutions of rose bengal. The Journal of Chemical Physics, 115(6), 2804-2810.
17. Lavorel, B., Cundiff, S. T., Wei, T. B., Lindberg, M., & Däub, F. (1998). Coherent ultrafast polarization modulation of high order harmonics in semiconductors. Physical Review Letters, 81(3), 585-588.