On the Solution of Diophantine Equation (πŸ‘πŸ•)πŸπ’™+(πŸπŸπ“Ύ+𝟏)π’š=π’›πŸ

  • Sudhanshu Aggarwal Assistant Professor, Department of Mathematics, National PG College, Barhalganj, Gorakhpur, Uttar Pradesh, India.
  • Deepak Kumar Assistant Professor, Department of Mathematics, S.R.P.S. College, Jaintpur, Muzaffarpur, Bihar, India.
  • Vidya Sagar Chaubey Assistant Professor, Department of Mathematics, B.R.D.P.G. College, Deoria, Uttar Pradesh, India.

Abstract

The aim of this study is to discuss the solution of the Diophantine equation (37)2π‘₯+(12π“Š+1)𝑦=𝑧2, where π“Š,π‘₯,𝑦, and 𝑧 are non-negative integers. For this, authors have used congruence modulo method. Results of this study indicate that the Diophantine equation (37)2π‘₯+(12π“Š+1)𝑦=𝑧2, where π“Š,π‘₯,𝑦, and 𝑧 are non-negative integers, has no solution in the set of non-negative integers.

Author Biography

Sudhanshu Aggarwal, Assistant Professor, Department of Mathematics, National PG College, Barhalganj, Gorakhpur, Uttar Pradesh, India.

https://orcid.org/0000-0001-6324-1539

References

1. Thomas Koshy (2007) Elementary number theory with applications, 2nd edition, Academic Press, Amsterdam; Boston.
2. Singh, K. (2020) Number theory step by step, Oxford University Press, United Kingdom.
3. Schoof, R. (2008) Catalan’s conjecture, Springer-Verlag, London.
4. Aggarwal, S., Sharma, S.D. and Singhal, H. (2020). On the Diophantine equation 223π‘₯+241𝑦=𝑧2, International Journal of Research and Innovation in Applied Science, 5 (8), 155-156.
5. Aggarwal, S., Sharma, S.D. and Vyas, A. (2020). On the existence of solution of Diophantine equation 181π‘₯+199𝑦=𝑧2, International Journal of Latest Technology in Engineering, Management & Applied Science, 9 (8), 85-86.
6. Kumar, A., Chaudhary, L. and Aggarwal, S. (2020). On the exponential Diophantine equation 601𝑝+619π‘ž=π‘Ÿ2, International Journal of Interdisciplinary Global Studies, 14(4), 29-30.
7. Sroysang, B. (2012) More on the Diophantine equation 8π‘₯+19𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 81(4), 601-604.
8. Mishra, R., Aggarwal, S. and Kumar, A. (2020). On the existence of solution of Diophantine equation 211𝛼+229𝛽=𝛾2, International Journal of Interdisciplinary Global Studies, 14(4), 78-79.
9. Rabago, J.F.T. (2013) On an open problem by B. Sroysang, Konuralp Journal of Mathematics, 1(2), 30-32.
10. Aggarwal, S. and Sharma, N. (2020). On the non-linear Diophantine equation 379π‘₯+397𝑦=𝑧2, Open Journal of Mathematical Sciences, 4(1), 397-399. DOI: 10.30538/oms2020.0129
11. Aggarwal, S. (2020). On the existence of solution of Diophantine equation 193π‘₯+211𝑦=𝑧2, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3&4), 1-2.
12. Aggarwal, S. (2023). Solution of the Diophantine equation 323π‘₯+85𝑦=𝑧2, Journal of Advanced Research in Applied Mathematics and Statistics, 8(1 & 2), 6-9.
13. Aggarwal, S., Sharma, S.D. and Sharma, N. (2020). On the non-linear Diophantine equation 313π‘₯+331𝑦=𝑧2, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3&4), 3-5.
14. Aggarwal, S., Sharma, S.D. and Chauhan, R. (2020). On the non-linear Diophantine equation 331π‘₯+349𝑦=𝑧2, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3&4), 6-8.
15. Aggarwal, S. and Kumar, S. (2021). On the exponential Diophantine equation (132π‘š)+(6π‘Ÿ+1)𝑛=𝑧2, Journal of Scientific Research, 13(3), 845-849.
16. Aggarwal, S. and Kumar, S. (2021). On the exponential Diophantine equation 439𝑝+457π‘ž=π‘Ÿ2, Journal of Emerging Technologies and Innovative Research, 8(3), 2357-2361.
17. Aggarwal, S. and Kumar, S. (2021). On the exponential Diophantine equation (72π‘š)+(6π‘Ÿ+1+1)𝑛=πœ”2, International Journal of Research and Scientific Innovation, 8(4), 58-60.
18. Aggarwal, S. and Kumar, S. (2021). On the exponential Diophantine equation (22π‘š+1βˆ’1)+(6π‘Ÿ+1)𝑛=𝑧2, International Journal of Research and Innovation in Applied Science, 6(4), 49-51.
19. Aggarwal, S. and Kumar, S. (2021). On the exponential Diophantine equation 𝑀3𝑝+𝑀5π‘ž=π‘Ÿ2, International Journal of Research and Innovation in Applied Science, 6(3), 126-127.
20. Aggarwal, S. and Kumar, S. (2021). On the exponential Diophantine equation (192π‘š)+(6𝛾+1+1)𝑛=𝜌2, International Journal of Research and Innovation in Applied Science, 6(2), 112-114.
21. Aggarwal, S. and Kumar, S. (2021). On the exponential Diophantine equation (192π‘š)+(12𝛾+1)𝑛=𝜌2, International Journal of Research and Innovation in Applied Science, 6(3), 14-16.
22. Aggarwal, S. and Kumar, S. (2021). On the exponential Diophantine equation (192π‘š)+(6𝛾+1)𝑛=𝜌2, International Journal of Research and Innovation in Applied Science, 6(3), 128-130.
23. Aggarwal, S. and Kumar, S. (2021). On the non-linear Diophantine equation [19]2π‘š+[22π‘Ÿ+1βˆ’1]=𝜌2, International Journal of Latest Technology in Engineering, Management & Applied Science, 10 (2), 14-16.
24. Aggarwal, S. (2021). On the exponential Diophantine equation (22π‘š+1βˆ’1)+(13)𝑛=𝑧2, Engineering and Applied Science Letter, 4(1), 77-79.
25. Aggarwal, S., Swarup, C., Gupta, D. and Kumar, S. (2022). Solution of the Diophantine equation 143π‘₯+45𝑦=𝑧2, Journal of Advanced Research in Applied Mathematics and Statistics, 7(3&4), 1-4.
26. Goel, P., Bhatnagar, K. and Aggarwal, S. (2020). On the exponential Diophantine equation 𝑀5𝑝+𝑀7π‘ž=π‘Ÿ2, International Journal of Interdisciplinary Global Studies, 14(4), 170-171.
27. Kumar, S., Bhatnagar, K., Kumar, A. and Aggarwal, S. (2020). On the exponential Diophantine equation (22π‘š+1βˆ’1)+(6π‘Ÿ+1+1)𝑛=πœ”2, International Journal of Interdisciplinary Global Studies, 14(4), 183-184.
28. Bhatnagar, K. and Aggarwal, S. (2020). On the exponential Diophantine equation 421𝑝+439π‘ž=π‘Ÿ2, International Journal of Interdisciplinary Global Studies, 14(4), 128-129.
29. Kumar, S., Bhatnagar, K., Kumar, N. and Aggarwal, S. (2020). On the exponential Diophantine equation (72π‘š)+(6π‘Ÿ+1)𝑛=𝑧2, International Journal of Interdisciplinary Global Studies, 14(4), 181-182
30. Gupta, D., Kumar, S. and Aggarwal, S. (2022). Solution of non-linear exponential Diophantine equation π‘₯𝛼+(1+π‘šπ‘¦)𝛽=𝑧2, Journal of Emerging Technologies and Innovative Research, 9(9), d486-d489.
31. Gupta, D., Kumar, S. and Aggarwal, S. (2022). Solution of non-linear exponential Diophantine equation (π‘₯π‘Ž+1)π‘š+(𝑦𝑏+1)𝑛=𝑧2, Journal of Emerging Technologies and Innovative Research, 9(9), f154-f157.
32. Aggarwal, S. and Upadhyaya, L.M. (2022). On the Diophantine equation 8𝛼+67𝛽=𝛾2, Bulletin of Pure & Applied Sciences-Mathematics and Statistics, 41(2), 153-155.
33. Aggarwal, S. and Upadhyaya, L.M. (2023). Solution of the Diophantine equation 22π‘₯+40𝑦=𝑧2, Bulletin of Pure & Applied Sciences-Mathematics and Statistics, 42(2), 122-125.
34. Aggarwal, S. and Upadhyaya, L.M. (2023). Solution of the Diophantine equation 783π‘₯+85𝑦=𝑧2, Bulletin of Pure & Applied Sciences-Mathematics and Statistics, 42(1), 31-35.
35. Aggarwal, S., Upadhyaya, L.M. and Shahida, A.T. (2024). On the Diophantine equation 8𝒾+71𝒿=𝓀2, Journal of Advanced Research in Applied Mathematics and Statistics, 9(1 & 2), 1-4.
36. Aggarwal, S., Swarup, C., Gupta, D. and Kumar, S. (2023). Solution of the Diophantine equation 143π‘₯+85𝑦=𝑧2, International Journal of Progressive Research in Science and Engineering, 4(2), 5-7.
37. Aggarwal, S. and Shahida, A.T. (2023). Solution of the Diophantine equation 10π‘₯+40𝑦=𝑧2, Journal of Advanced Research in Applied Mathematics and Statistics, 8(3 & 4), 26-29.
38. Aggarwal, S. and Shahida, A.T. (2024). Solution of exponential Diophantine equation 𝑛π‘₯+43𝑦=𝑧2, where 𝑛≑2(π‘šπ‘œπ‘‘ 129) and 𝑛+1 is not a perfect square, Journal of Scientific Research, 16(2), 429-435.
39. Aggarwal, S., Kumar, S., Gupta, D. and Kumar, S. (2023). Solution of the Diophantine equation 143π‘₯+485𝑦=𝑧2, International Research Journal of Modernization in Engineering Technology and Science, 5(2), 555-558.
40. Aggarwal, S., Shahida, A. T., Pandey, E. and Vyas, A. (2023). On the problem of solution of non-linear (exponential) Diophantine equation 𝛽π‘₯+(𝛽+18)𝑦=𝑧2, Mathematics and Statistics, 11(5), 834-839.
41. Aggarwal, S., Pandey, R. and Kumar, R. (2024). Solution of the exponential Diophantine equation 10π‘₯+400𝑦=𝑧2, International Journal of Latest Technology in Engineering, Management & Applied Science, 13 (2), 38-40.
Published
2024-12-23
How to Cite
AGGARWAL, Sudhanshu; KUMAR, Deepak; CHAUBEY, Vidya Sagar. On the Solution of Diophantine Equation (πŸ‘πŸ•)πŸπ’™+(πŸπŸπ“Ύ+𝟏)π’š=π’›πŸ. Journal of Advanced Research in Applied Mathematics and Statistics, [S.l.], v. 9, n. 3&4, p. 43-47, dec. 2024. ISSN 2455-7021. Available at: <http://thejournalshouse.com/index.php/Journal-Maths-Stats/article/view/1351>. Date accessed: 21 dec. 2024.