ON THE DIOPHANTINE EQUATION ππ²+πππ³=π΄π
Abstract
In this study, authors looked for non-negative integer solutions to the Diophantine equation 8πΎ+71πΏ=π2, where πΎ,πΏ,π are non-negative integers. For this, authors turned to Catalan's conjecture. The current paper's results demonstrate that there is only one non-negative integer solution to the Diophantine equation 8πΎ+71πΏ=π2, where πΎ,πΏ,π are non-negative integers. This solution is provided by (πΎ,πΏ,π )=(1,0,3).
AMS SUBJECT CLASSIFICATION: 11D61
References
1. Koshy, T. (2007) Elementary number theory with applications, Academic Press, 2nd edition, Amsterdam, Boston.
2. Andreescu, T. and Andrica, D. (2002) An introduction to Diophantine equations, GIL Publishing House, ISBN 973-9238-88-2.
3. Mordell, L.J. (1969) Diophantine equations, Academic Press, London, New York.
4. Sierpinski, W. (1988) Elementary theory of numbers, 2nd edition, North-Holland, Amsterdam.
5. Sroysang, B. (2012) More on the Diophantine equation 8π₯+19π¦=π§2, International Journal of Pure and Applied Mathematics, 81(4), 601-604.
6. Sroysang, B. (2014) On the Diophantine equation 8π₯+13π¦=π§2, International Journal of Pure and Applied Mathematics, 90(1), 69-72.
7. Aggarwal, S. (2020) On the existence of solution of Diophantine equation 193π₯+211π¦=π§2, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3&4), 1-2.
8. Sroysang, B. (2012) On the Diophantine equation 31π₯+32π¦=π§2, International Journal of Pure and Applied Mathematics, 81(4), 609-612.
9. Aggarwal, S. and Sharma, N. (2020) On the non-linear Diophantine equation 379π₯+397π¦=π§2, Open Journal of Mathematical Sciences, 4(1), 397-399. DOI: 10.30538/oms2020.0129
10. Bhatnagar, K. and Aggarwal, S. (2020) On the exponential Diophantine equation 421π+439π=π2, International Journal of Interdisciplinary Global Studies, 14(4), 128-129.
11. Gupta, D., Kumar, S. and Aggarwal, S. (2022) Solution of non-linear exponential Diophantine equation (π₯π+1)π+(π¦π+1)π=π§2, Journal of Emerging Technologies and Innovative Research, 9(9), f154-f157.
12. Gupta, D., Kumar, S. and Aggarwal, S. (2022) Solution of non-linear exponential Diophantine equation π₯πΌ+(1+ππ¦)π½=π§2, Journal of Emerging Technologies and Innovative Research, 9(9), d486-d489.
13. Sroysang, B. (2014) On the Diophantine equation 323π₯+325π¦=π§2, International Journal of Pure and Applied Mathematics, 91(3), 395-398.
14. Sroysang, B. (2014) On the Diophantine equation 3π₯+45π¦=π§2, International Journal of Pure and Applied Mathematics, 91(2), 269-272.
15. Sroysang, B. (2014) On the Diophantine equation 143π₯+145π¦=π§2, International Journal of Pure and Applied Mathematics, 91(2), 265-268.
16. Sroysang, B. (2014) On the Diophantine equation 3π₯+85π¦=π§2, International Journal of Pure and Applied Mathematics, 91(1), 131-134.
17. Sroysang, B. (2014) More on the Diophantine equation 4π₯+10π¦=π§2, International Journal of Pure and Applied Mathematics, 91(1), 135-138.
18. Aggarwal, S., Kumar, S., Gupta, D. and Kumar, S. (2023) Solution of the Diophantine equation 143π₯+485π¦=π§2, International Research Journal of Modernization in Engineering Technology and Science, 5(2), 555-558.
19. Kumar, A., Chaudhary, L. and Aggarwal, S. (2020) On the exponential Diophantine equation 601π+619π=π2, International Journal of Interdisciplinary Global Studies, 14(4), 29-30.
20. Mishra, R., Aggarwal, S. and Kumar, A. (2020) On the existence of solution of Diophantine equation 211πΌ+229π½=πΎ2, International Journal of Interdisciplinary Global Studies, 14(4), 78-79.
21. Aggarwal, S., Swarup, C., Gupta, D. and Kumar, S. (2023) Solution of the Diophantine equation 143π₯+85π¦=π§2, International Journal of Progressive Research in Science and Engineering, 4(2), 5-7.
22. Aggarwal, S., Swarup, C., Gupta, D. and Kumar, S. (2022) Solution of the Diophantine equation 143π₯+45π¦=π§2, Journal of Advanced Research in Applied Mathematics and Statistics, 7(3 & 4), 1-4.
23. Kumar, S., Bhatnagar, K., Kumar, A. and Aggarwal, S. (2020) On the exponential Diophantine equation (22π+1β1)+(6π+1+1)π=π2, International Journal of Interdisciplinary Global Studies, 14(4), 183-184.
24. Kumar, S., Bhatnagar, K., Kumar, N. and Aggarwal, S. (2020) On the exponential Diophantine equation (72π)+(6π+1)π=π§2, International Journal of Interdisciplinary Global Studies, 14(4), 181-182.
25. Aggarwal, S., Sharma, S.D. and Singhal, H. (2020) On the Diophantine equation 223π₯+241π¦=π§2, International Journal of Research and Innovation in Applied Science, 5 (8), 155-156.
26. Aggarwal, S., Sharma, S.D. and Vyas, A. (2020) On the existence of solution of Diophantine equation 181π₯+199π¦=π§2, International Journal of Latest Technology in Engineering, Management & Applied Science, 9 (8), 85-86.
27. Aggarwal, S., Shahida, A. T., Pandey, E. and Vyas, A. (2023) On the problem of solution of non-linear (exponential) Diophantine equation π½π₯+(π½+18)π¦=π§2, Mathematics and Statistics, 11(5), 834-839.
28. Schoof, R. (2008) Catalanβs conjecture, Springer-Verlag, London.
2. Andreescu, T. and Andrica, D. (2002) An introduction to Diophantine equations, GIL Publishing House, ISBN 973-9238-88-2.
3. Mordell, L.J. (1969) Diophantine equations, Academic Press, London, New York.
4. Sierpinski, W. (1988) Elementary theory of numbers, 2nd edition, North-Holland, Amsterdam.
5. Sroysang, B. (2012) More on the Diophantine equation 8π₯+19π¦=π§2, International Journal of Pure and Applied Mathematics, 81(4), 601-604.
6. Sroysang, B. (2014) On the Diophantine equation 8π₯+13π¦=π§2, International Journal of Pure and Applied Mathematics, 90(1), 69-72.
7. Aggarwal, S. (2020) On the existence of solution of Diophantine equation 193π₯+211π¦=π§2, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3&4), 1-2.
8. Sroysang, B. (2012) On the Diophantine equation 31π₯+32π¦=π§2, International Journal of Pure and Applied Mathematics, 81(4), 609-612.
9. Aggarwal, S. and Sharma, N. (2020) On the non-linear Diophantine equation 379π₯+397π¦=π§2, Open Journal of Mathematical Sciences, 4(1), 397-399. DOI: 10.30538/oms2020.0129
10. Bhatnagar, K. and Aggarwal, S. (2020) On the exponential Diophantine equation 421π+439π=π2, International Journal of Interdisciplinary Global Studies, 14(4), 128-129.
11. Gupta, D., Kumar, S. and Aggarwal, S. (2022) Solution of non-linear exponential Diophantine equation (π₯π+1)π+(π¦π+1)π=π§2, Journal of Emerging Technologies and Innovative Research, 9(9), f154-f157.
12. Gupta, D., Kumar, S. and Aggarwal, S. (2022) Solution of non-linear exponential Diophantine equation π₯πΌ+(1+ππ¦)π½=π§2, Journal of Emerging Technologies and Innovative Research, 9(9), d486-d489.
13. Sroysang, B. (2014) On the Diophantine equation 323π₯+325π¦=π§2, International Journal of Pure and Applied Mathematics, 91(3), 395-398.
14. Sroysang, B. (2014) On the Diophantine equation 3π₯+45π¦=π§2, International Journal of Pure and Applied Mathematics, 91(2), 269-272.
15. Sroysang, B. (2014) On the Diophantine equation 143π₯+145π¦=π§2, International Journal of Pure and Applied Mathematics, 91(2), 265-268.
16. Sroysang, B. (2014) On the Diophantine equation 3π₯+85π¦=π§2, International Journal of Pure and Applied Mathematics, 91(1), 131-134.
17. Sroysang, B. (2014) More on the Diophantine equation 4π₯+10π¦=π§2, International Journal of Pure and Applied Mathematics, 91(1), 135-138.
18. Aggarwal, S., Kumar, S., Gupta, D. and Kumar, S. (2023) Solution of the Diophantine equation 143π₯+485π¦=π§2, International Research Journal of Modernization in Engineering Technology and Science, 5(2), 555-558.
19. Kumar, A., Chaudhary, L. and Aggarwal, S. (2020) On the exponential Diophantine equation 601π+619π=π2, International Journal of Interdisciplinary Global Studies, 14(4), 29-30.
20. Mishra, R., Aggarwal, S. and Kumar, A. (2020) On the existence of solution of Diophantine equation 211πΌ+229π½=πΎ2, International Journal of Interdisciplinary Global Studies, 14(4), 78-79.
21. Aggarwal, S., Swarup, C., Gupta, D. and Kumar, S. (2023) Solution of the Diophantine equation 143π₯+85π¦=π§2, International Journal of Progressive Research in Science and Engineering, 4(2), 5-7.
22. Aggarwal, S., Swarup, C., Gupta, D. and Kumar, S. (2022) Solution of the Diophantine equation 143π₯+45π¦=π§2, Journal of Advanced Research in Applied Mathematics and Statistics, 7(3 & 4), 1-4.
23. Kumar, S., Bhatnagar, K., Kumar, A. and Aggarwal, S. (2020) On the exponential Diophantine equation (22π+1β1)+(6π+1+1)π=π2, International Journal of Interdisciplinary Global Studies, 14(4), 183-184.
24. Kumar, S., Bhatnagar, K., Kumar, N. and Aggarwal, S. (2020) On the exponential Diophantine equation (72π)+(6π+1)π=π§2, International Journal of Interdisciplinary Global Studies, 14(4), 181-182.
25. Aggarwal, S., Sharma, S.D. and Singhal, H. (2020) On the Diophantine equation 223π₯+241π¦=π§2, International Journal of Research and Innovation in Applied Science, 5 (8), 155-156.
26. Aggarwal, S., Sharma, S.D. and Vyas, A. (2020) On the existence of solution of Diophantine equation 181π₯+199π¦=π§2, International Journal of Latest Technology in Engineering, Management & Applied Science, 9 (8), 85-86.
27. Aggarwal, S., Shahida, A. T., Pandey, E. and Vyas, A. (2023) On the problem of solution of non-linear (exponential) Diophantine equation π½π₯+(π½+18)π¦=π§2, Mathematics and Statistics, 11(5), 834-839.
28. Schoof, R. (2008) Catalanβs conjecture, Springer-Verlag, London.
Published
2024-02-03
How to Cite
AGGARWAL, Sudhanshu; UPADHYAYA, Lalit Mohan; A. T., Shahida.
ON THE DIOPHANTINE EQUATION ππ²+πππ³=π΄π.
Journal of Advanced Research in Applied Mathematics and Statistics, [S.l.], v. 9, n. 1&2, p. 1-4, feb. 2024.
ISSN 2455-7021.
Available at: <http://thejournalshouse.com/index.php/Journal-Maths-Stats/article/view/933>. Date accessed: 21 dec. 2024.
Section
Research Article