ON THE DIOPHANTINE EQUATION 𝟖𝓲+𝟕𝟏𝓳=𝓴𝟐

Authors

  • Sudhanshu Aggarwal Assistant Professor, Department of Mathematics, National PG College, Barhalganj, Gorakhpur, Uttar Pradesh, India.
  • Lalit Mohan Upadhyaya Associate Professor, Department of Mathematics, Municipal Post Graduate College, Mussoorie, Dehradun, Uttarakhand, India
  • Shahida A. T. Assistant Professor, Department of Mathematics, MES Mampad College, Mampad, Kerala, India.

Keywords:

Catalan Conjecture, Diophantine Equation, Integers, Solution

Abstract

In this study, authors looked for non-negative integer solutions to the Diophantine equation 8ð’¾+71ð’¿=ð“€2, where ð’¾,ð’¿,ð“€ are non-negative integers. For this, authors turned to Catalan's conjecture. The current paper's results demonstrate that there is only one non-negative integer solution to the Diophantine equation 8ð’¾+71ð’¿=ð“€2, where ð’¾,ð’¿,ð“€ are non-negative integers. This solution is provided by (ð’¾,ð’¿,ð“€ )=(1,0,3).
AMS SUBJECT CLASSIFICATION: 11D61

Author Biography

Sudhanshu Aggarwal, Assistant Professor, Department of Mathematics, National PG College, Barhalganj, Gorakhpur, Uttar Pradesh, India.

https://orcid.org/0000-0001-6324-1539

References

1. Koshy, T. (2007) Elementary number theory with applications, Academic Press, 2nd edition, Amsterdam, Boston.
2. Andreescu, T. and Andrica, D. (2002) An introduction to Diophantine equations, GIL Publishing House, ISBN 973-9238-88-2.
3. Mordell, L.J. (1969) Diophantine equations, Academic Press, London, New York.
4. Sierpinski, W. (1988) Elementary theory of numbers, 2nd edition, North-Holland, Amsterdam.
5. Sroysang, B. (2012) More on the Diophantine equation 8𝑥+19𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 81(4), 601-604.
6. Sroysang, B. (2014) On the Diophantine equation 8𝑥+13𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 90(1), 69-72.
7. Aggarwal, S. (2020) On the existence of solution of Diophantine equation 193𝑥+211𝑦=𝑧2, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3&4), 1-2.
8. Sroysang, B. (2012) On the Diophantine equation 31𝑥+32𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 81(4), 609-612.
9. Aggarwal, S. and Sharma, N. (2020) On the non-linear Diophantine equation 379𝑥+397𝑦=𝑧2, Open Journal of Mathematical Sciences, 4(1), 397-399. DOI: 10.30538/oms2020.0129
10. Bhatnagar, K. and Aggarwal, S. (2020) On the exponential Diophantine equation 421𝑝+439𝑞=𝑟2, International Journal of Interdisciplinary Global Studies, 14(4), 128-129.
11. Gupta, D., Kumar, S. and Aggarwal, S. (2022) Solution of non-linear exponential Diophantine equation (𝑥𝑎+1)𝑚+(𝑦𝑏+1)𝑛=𝑧2, Journal of Emerging Technologies and Innovative Research, 9(9), f154-f157.
12. Gupta, D., Kumar, S. and Aggarwal, S. (2022) Solution of non-linear exponential Diophantine equation 𝑥𝛼+(1+𝑚𝑦)𝛽=𝑧2, Journal of Emerging Technologies and Innovative Research, 9(9), d486-d489.
13. Sroysang, B. (2014) On the Diophantine equation 323𝑥+325𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 91(3), 395-398.
14. Sroysang, B. (2014) On the Diophantine equation 3𝑥+45𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 91(2), 269-272.
15. Sroysang, B. (2014) On the Diophantine equation 143𝑥+145𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 91(2), 265-268.
16. Sroysang, B. (2014) On the Diophantine equation 3𝑥+85𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 91(1), 131-134.
17. Sroysang, B. (2014) More on the Diophantine equation 4𝑥+10𝑦=𝑧2, International Journal of Pure and Applied Mathematics, 91(1), 135-138.
18. Aggarwal, S., Kumar, S., Gupta, D. and Kumar, S. (2023) Solution of the Diophantine equation 143𝑥+485𝑦=𝑧2, International Research Journal of Modernization in Engineering Technology and Science, 5(2), 555-558.
19. Kumar, A., Chaudhary, L. and Aggarwal, S. (2020) On the exponential Diophantine equation 601𝑝+619𝑞=𝑟2, International Journal of Interdisciplinary Global Studies, 14(4), 29-30.
20. Mishra, R., Aggarwal, S. and Kumar, A. (2020) On the existence of solution of Diophantine equation 211𝛼+229𝛽=𝛾2, International Journal of Interdisciplinary Global Studies, 14(4), 78-79.
21. Aggarwal, S., Swarup, C., Gupta, D. and Kumar, S. (2023) Solution of the Diophantine equation 143𝑥+85𝑦=𝑧2, International Journal of Progressive Research in Science and Engineering, 4(2), 5-7.
22. Aggarwal, S., Swarup, C., Gupta, D. and Kumar, S. (2022) Solution of the Diophantine equation 143𝑥+45𝑦=𝑧2, Journal of Advanced Research in Applied Mathematics and Statistics, 7(3 & 4), 1-4.
23. Kumar, S., Bhatnagar, K., Kumar, A. and Aggarwal, S. (2020) On the exponential Diophantine equation (22𝑚+1−1)+(6𝑟+1+1)𝑛=𝜔2, International Journal of Interdisciplinary Global Studies, 14(4), 183-184.
24. Kumar, S., Bhatnagar, K., Kumar, N. and Aggarwal, S. (2020) On the exponential Diophantine equation (72𝑚)+(6𝑟+1)𝑛=𝑧2, International Journal of Interdisciplinary Global Studies, 14(4), 181-182.
25. Aggarwal, S., Sharma, S.D. and Singhal, H. (2020) On the Diophantine equation 223𝑥+241𝑦=𝑧2, International Journal of Research and Innovation in Applied Science, 5 (8), 155-156.
26. Aggarwal, S., Sharma, S.D. and Vyas, A. (2020) On the existence of solution of Diophantine equation 181𝑥+199𝑦=𝑧2, International Journal of Latest Technology in Engineering, Management & Applied Science, 9 (8), 85-86.
27. Aggarwal, S., Shahida, A. T., Pandey, E. and Vyas, A. (2023) On the problem of solution of non-linear (exponential) Diophantine equation 𝛽𝑥+(𝛽+18)𝑦=𝑧2, Mathematics and Statistics, 11(5), 834-839.
28. Schoof, R. (2008) Catalan’s conjecture, Springer-Verlag, London.

Published

2024-02-03