Evaluation on Semiconductor Device MOSFET
Abstract
MOSFET is metal oxide semiconductor field effect transistor. MOSFET is a three terminal device having gate, drain, source. It is voltage controlled device. MOSFET is controlled rectifiers and it is combination of FET and BJT. MOSFET is derived from MOS technology and FET(field effect transistor). In this paper I am discussing about MOSFET its introduction, types of MOSFET, how it is works, its advantages, disadvantages, applications, references.
How to cite this article:
Kanwar N, Sharma R. Evaluation on Semiconductor. J Adv Res Electro Engi Tech 2020; 7(1): 12-14.
References
1. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May 2008. DOI: 10.1038/nature06932
2. L. O. Chua, “Memristor—The Missing Circuit Element,” IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971. DOI: 10.1109/TCT.1971.1083337.
3. S. Benderli and T. A. Wey, “On SPICE macro modelling of TiO2 memristors,” Electron. Lett., vol. 45, no. 7, p. 377, 2009. DOI: 10.1049/el.2009.3511
4. Z. Biolek, D. Biolek, and V. Biolková, “SPICE Model of Memristor with Nonlinear Dopant Drift,” Radio engineering, vol. 18, no. 2, pp. 210–214, 2009.
5. Y. V. Pershin and M. Di Ventra, “Practical Approach to Programmable Analog Circuits With Memristors,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 57, no. 8, pp. 1857–1864, Aug. 2010. DOI: 10.1109/TCSI.2009.2038539.
6. Á. Rak and G. Cserey, “Macromodeling of the Memristor in SPICE,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 29, no. 4, pp. 632–636, Apr. 2010. DOI: 10.1109/TCAD.2010.2042900.
7. S. Shin, K. Kim, and S.-M. Kang, “Compact Models for Memristors Based on Charge-Flux Constitutive Relationships,” IEEE Trans. Comput. Des. Integr.
8. Circuits Syst., vol. 29, no. 4, pp. 590–598, Apr. 2010. DOI: 10.1109/TCAD.2010.2042891.
2. L. O. Chua, “Memristor—The Missing Circuit Element,” IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971. DOI: 10.1109/TCT.1971.1083337.
3. S. Benderli and T. A. Wey, “On SPICE macro modelling of TiO2 memristors,” Electron. Lett., vol. 45, no. 7, p. 377, 2009. DOI: 10.1049/el.2009.3511
4. Z. Biolek, D. Biolek, and V. Biolková, “SPICE Model of Memristor with Nonlinear Dopant Drift,” Radio engineering, vol. 18, no. 2, pp. 210–214, 2009.
5. Y. V. Pershin and M. Di Ventra, “Practical Approach to Programmable Analog Circuits With Memristors,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 57, no. 8, pp. 1857–1864, Aug. 2010. DOI: 10.1109/TCSI.2009.2038539.
6. Á. Rak and G. Cserey, “Macromodeling of the Memristor in SPICE,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 29, no. 4, pp. 632–636, Apr. 2010. DOI: 10.1109/TCAD.2010.2042900.
7. S. Shin, K. Kim, and S.-M. Kang, “Compact Models for Memristors Based on Charge-Flux Constitutive Relationships,” IEEE Trans. Comput. Des. Integr.
8. Circuits Syst., vol. 29, no. 4, pp. 590–598, Apr. 2010. DOI: 10.1109/TCAD.2010.2042891.
Published
2021-06-03
How to Cite
KANWAR, Ms. Neha; SHARMA, Rakesh.
Evaluation on Semiconductor Device MOSFET.
Journal of Advanced Research in Electronics Engineering and Technology, [S.l.], v. 7, n. 1, p. 12-14, june 2021.
ISSN 2456-1428.
Available at: <http://thejournalshouse.com/index.php/electronics-engg-technology-adr/article/view/145>. Date accessed: 22 dec. 2024.
Section
Articles