Significance of the Geochemistry, Petrogenesis and Tectonic Evolution of the Neoproterozoic amphibolites groups within the Gneisses and Migmatites from El Obeid Area, North Kordofan State, Sudan

  • Hassan A Mustafa Faculty of Science, University of Kordofan, El Obeid, P.O 160, Sudan.
  • Mushal A Salih Faculty of Science, University of Kordofan, El Obeid, P.O 160, Sudan.
  • Asim A Elmansour Faculty of Science, University of Kordofan, El Obeid, P.O 160, Sudan.
  • Mohammed I Abdelsamad Faculty of Science, University of Kordofan, El Obeid, P.O 160, Sudan.
  • Mohammed A Elhadi Faculty of Science, University of Aljazeera, Wad Madani, Sudan.
  • Einas M Slama Faculty of Science, University of Kordofan, El Obeid, P.O 160, Sudan & Faculty of Earth Science, China University of Geosciences, Wuhan, 430074, China.

Abstract

El Obeid area consists of a suite of ~1.0 Ga amphibolites that are associated with the gneisses & migmatites. Petrographic and geochemical analyses of these amphibolites indicated that they correspond to basalts that derive from sub-alkaline magmas; and they classified into two groups. Group A which is cropped out in J. El Eiza’a suffered from weakly anatexis of the first metamorphic event and characterized by low Nb contents (0.44–0.96 ppm), and REE and multi-elemental patterns similar to N-MORB. Group B amphibolites within the gneisses and migmatites in J. Kordofan, only undergone the second metamorphic processes and has high Nb contents ranging from 2.00 to 18.7 ppm, displaying an E-MORB and Pickle Nb-enriched basalt geochemical signature. The low silica and MgO concentrations for the two groups respectively (SiO2= 47.8–49.3 and 46.7–50.7 wt %) and (4.40–6.44 and 5.69–7.91%), suggested a mantle source for both groups. Their variable values of La/Ta (15.6–20.3 and 9.20–22.8), La/Nb (1.19–1.96 and 0.91–2.59) and Ba/Nb ratios (13.9–51.9 and 0.70–5.02), respectively, suggesting that they were likely derived from an average melt modified sub-continental lithospheric mantle, also their completely different REE profiles indicated authenticated their heterogeneous mantle source. Both groups have an arc-like and back-arc settings and show inputs of newly subduction-derived melt in the wedge source. Regional relationships indicated that the formation of these rocks resulted from the episodic amalgamation event during that time, an exterior accretion orogeny along the margin of Rodinia during ~1.0 Ga.


How to cite this article: Mustafa HA, Salih MA, Elmansour AA. Significance of the Geochemistry, Petrogenesis and Tectonic Evolution of the Neoproterozoic Amphibolites groups within the Gneisses and Migmatites from
El Obeid Area, North Kordofan State, Sudan. J Adv Res Geo Sci Rem Sens 2020; 7(3&4): 1-20.

References

1. Abdalla OAE. Ground Water Hydrology of the west-Central Sudan, Hydrochemical and Isotopic Investigations Flow Similuuation and Resources Management, Verlag Dr. Koster Berlin. 1999.
2. Abdel Mageed A. Sudan Industrial Minerals and Rocks, Center for Strategic Studies, Khartoum, Sudan. 1998.
3. Abdel Rahman, E.M., 1993. Geochemical and geotectonic controls of the metallogenic evolution of selected ophiolite complexes from the Sudan. Berl. Geowiss. Abh., A 145 (175 pp).
4. Abdel Rahman, E.M., Harms, U., Schandelmeier, H., Franz, G., Darbyshire, D.P.F., Horn, P., and Muller- Sohnius. 1990. A new ophiolite occurrence in NW Sudan - constraint on Late Proterozoic tectonism-Terra Nova, Melbourne-Oxford- London-Paris.2, 363-376.
5. Abdelsalam, M. G., Liégeois, J. P., and Stern, R. J. 2002. The Saharan Metacraton: Journal of African Earth Sciences, 34, 119-136.
6. Abdelsalam, M. G., Stern, R.J 1996a. Deformational history of the Neoproterozoic Keraf Zone in NE Sudan revealed by Shuttle Imaging Radar. Journal of Geology, 103, 475-491.
7. Abdelsalam, M.G. and Stern, R.J. 1996b. Mapping Precambrian structures in the Sahara Desert with SIR-C/X-SAR radar: The Neoproterozoic Keraf Suture, NE Sudan. Journal of Geophysical Research. 101(10), 065-076.
8. Abdelsalam, M.G., Stern, R.J., Copeland, P., Elfaki, E., Elhur, B., Ibrahim, F.M. 1998. The Neoproterozoic Keraf suture in NE Sudan: sinistral transpression along the eastern margin of west Gondwana. J. Geol., 106, 2: 133-148.
9. Abdelsalam, M.G., Dawoud, A.S., 1991. The Kabus ophiolitic melange, Sudan, and its bearing on the W boundary of the Nubian Shield. J. Geol. Soc. London 148, 83-92.
10. Ahijado, A., Casillas, R., Hernandez-Pacheco, A., 2001. The dyke swarms of the Amanay Massif, Fuerteventura, Canary Islands (Spain). Journal of Asian Earth Sciences 19, 333-345.
11. Ahmed-Said, Y. and Leake, B.E., 1997. The petrogenesis of the Edough amphibolites, Annaba, NE Algeria: two unrelated basic magmas and the lherzolite-harzburgite residue of a possible magma source. Mineralogy and Petrology 59, 207-237.
12. Al Biely, A., I., Farwa, A. G. and Gism ElSid, N. E. 1986. A Geological ,Geophysical and Hydrogeological Investigation In North Kordofan , Department of Geology, University of Khartoum, Khartoum ,Sudan.
13. Aldanmaz, E., Kӧprṻbasi, N., Gṻrer, ӦF, Kaymakci, N., Gourgaud, A. 2006. Geochemical constraints of the Cenozoic, OIB-type alkaline volcanics rocks of NW Turkey: implications for mantle sources and melting processes. Lithos. 86, 50-76.
14. Cabanis, B., Lecolle, M. 1989. Le diagramme La/10-Y/15-Nb: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de me´lange et/ou de contamination crustale. CR Sci Ser II 309, 2023-2029.
15. Cullers, R.L., Yeh, L.T., Choudhuri, S., Guidotti, C.V., 1974. Rare earth elements in Silurian schists from N.W. Maine. Geochemistry Geosystems Acta 38, 389-400.
16. El Ageed, A.I and Elrabaa, S.M.E., 1981. The Geology and Structural Evolution of The Northeastern Nuba Mountain Kordofan Province, Sudan, Bulletin No 32, Ministry of Energy and Mining Geology and Mineral Resources Department, Sudan.
17. El Gaby, S. 1988/ The Pan-African Belt of Northeast Africa and Adjacent Areas. (Eds) Rein hard O. Greiling.
18. El Khidir, S.O.H. 1997. Metamorphic Evolution of Sodari-Umm Badr Area -North Kordofan, Sudan. (unpublished M.Sc. Thesis) University of Khartoum.
19. Escuder, V.J., Pe´rez-Estau´n, A., Weis, D. 2009. Geochemical constraints on the origin of the late Jurassic proto-Caribbean oceanic crust in Hispaniola. International Journal of Earth Science. 98, 407-425.
20. Ernst, R.E., Bleeker, W., Söderlund, U., Kerr, A.C., 2013. Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution, Lithos 174, 1-14.
21. Ernst, R.E., Wingate, M.T.D., Buchan, K.L., Li, Z.X., 2008. Global record of 1600-700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research 160,159-178.
22. Ernst, R.E., Buchan, K.L., 2001. Large mafic magmatic events through time and links to mantle plume heads. In: Ernst, R.E., Buchan, K.L. (Eds.), Mantle Plumes: Their Identification through Time. Special Paper Geological Society of America 352, 483-575.
23. Ernst, R.E., Buchan, K.L., 1997. Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: Mahoney, J.J., Coffin, M.E. (Eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, vol. 100, pp. 297-333.
24. Ernst, R.E., Head, J.W., Parfitt, E., Grosfils, E., Wilson, L., 1995. Giant radiating dyke swarms on Earth and Venus. Earth-Science Review 39, 1-58.
25. Evuk, D. O. O., 2013. Geodynamic evolution of the central-eastern Bayuda Desert Basement, Sudan: Structural, petrological, geochemical and geochronological investigations. Ph.D Thesis Technischen University, Berlin.
26. Fitton, J.G. 2007. The OIB paradox. In: Foulger GR, Jurdy DM (eds) Plates, plumes and planetary processes. Geol Soc Amer Spec Pap 430, 387-412.
27. Floyd, P.A., Winchester, I.A. 1978. Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology. 21, 91-306.
28. Floyd, P.A., Winchester, I.A. 1983. Element mobility associated with meta-shear zones within the Ben Hope amphibolite suite, Scotland. Chemical Geology. 39, 1-15.
29. Foster, B.D.F. 1994. Origin and Tectonic Significance of Peninsular Ranges Amphibolites, Ph.D. thesis Faculty of San Diego State University (unpublished).
30. Francalanci, L., Tommasini, S., Conticelli, S., Davies, G. R., 1999. Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano. Italy. Earth and Planetary Science Letters 167, 61 - 69.
31. Frey, F. A., Green, D. H., Roy, S. D. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from SE Australia utilizing geochemical and experimental petrological data. Journal of Petrology. 19, 463-513.
32. Gass, I.G. 1981. Pan-African (Late-Proterozoic) plate tectonics of Arabian-Nubian Shield. In: Precambrian plate tectonics (edited by Kroner, A.), Amsterdam, 357-405.
33. Geofrik, 2013. Supercontinente Kenorland (http://geofrik.com/2013/05/06/supercontinentekenorland/). 2013 publications.
34. Gill, R. 2010. Igneous Rocks and Processes a practical guide. A John Wilery & sons, Ltd, Publication. Malaysia.
35. Goldberg, A.S., 2010. Dyke swarms as indicators of major extensional events in the 1.9-1.2 Ga Columbia supercontinent. Journal of Geodynamics 50, 176-190.
36. Gurenko, A. A., Sobolev, A. V., Hoernle, K., A., Hauff, F., Schmincke, H.,U. 2009. Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: A mixed-up mantle. Earth Planetary Science Letter. 277, 514-524.
37. Gust, D., Arculus, R.J., Kersting, A.B., 1997. Aspects of Magma Sources and Processes in the Honshu Arc. The Canadian Mineralogist 35, 347-365.
38. Halla, J., M.I., Kapyaho, Kurhila, M.I., A.,Lauri, L.S., Nironen M., Ramo, O.T., Sorjonen-Ward, P., & Aikas, O. (2005). “Eurogranites 2005 — Proterozoic and Archean Granites and Related Rocks of the Finnish Precambrian
39. Harms, U., Darbyshire, D.P.F., Denkler, T., Hengst, M. and Schandelmeier, H. 1994. Evolution of the Neoproterozoic Delgo Suture Zone and crustal growth in northern Sudan: geochemical and radiogenic isotope constrains. Geologische Rundsch. 83, 591-603.
40. Harms, U., Schandelmeier, H., Darbyshire, D.P.F., 1990. Pan-African reworked early/ middle Proterozoic crust in NE Africa W of the Nile: Sr and Nd isotope evidence. J. Geol. Soc. London 147, 859-872.
41. Herzberg, C. 2006. Distribution and size of pyroxenite bodies in the mantle. EOS Trans Amer Geophys Union 746:Fall Meeting Supplement, Abstract U12A-04.
42. Herzberg, C., Asimow, P., D. 2008. Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation. Geochemistry and Geophysics Geosystem 9, Q09001. doi:10.1029/2008GC002057.
43. Hoffman, P.F., 1997. Tectonic genealogy of North America. In: van der Pluijm, B.A., Marshak, S. (Eds.), Earth structure. An Introduction to Structural Geology and Tectonics. McGraw-Hill, New York, pp. 459-464.
44. Hoffman, P. F., 1991. Did the breakout of Laurentia turn Gondwana inside out? Science, 252, 1409 - 1412.
45. Hollings, P., Kerrich, R. 2004. Geochemical systematics of tholeiites from the 2.86 Ga Pickle Crow Assemblage, northwestern Ontario: arc basalts with positive and negative Nb-Hf anomalies. Precambrian Research, 134, 1-20.
46. Hou, G.T., 2012. Mechanism for three types of mafic dyke swarms. Geoscience Frontiers 3(2), 217-223.
47. Ibinoof, M. A., Bumby, A. J., Grantham, G. H., Abdelrahman, E. M., Eriksson, P. G., le Roux, P. J. 2016. Geology, geochemistry and Sr-Nd constraintsof selected metavolcanic rocks from the eastern boundary of the Saharan Metacraton, southern Sudan: A possible revision of the eastern boundary. Precambrian Research, 281, 566-584.
48. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks Can Journal Earth Sciences 8, 523-548.
49. Jagout, E., Palme, H., Baddenhausen, H., Blum, K., Candales, M., Dreibus, G., Spettel, B., Lorenz, V., Wanke, H. 1979. The abundance of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Proc 10th Lunar Planet Sci Conf, 2031-2150.
50. Johnson Y. A, Park R. G and Winchester J. A. 1987. Geochemistry, Petrogenesis and Tectonic Significance of the Early Proterozoic Loch Maree Group Amphibolites of the Lewisian Complex, NW Scotland, Geological Society, London, Special Publications. 33, 255-269.
51. Kamber, B.S. 2015. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic Precambrian Research 258, 48-82.
52. Kelley, K.A., Plank, T., Ludden, J., Staudigel, H., 2003. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry Geophysics Geosystem 4.
53. Kröner, A. 1985. Ophiolites and evolution of tectonic boundaries in the Late-Proterozoic Arabian-Nubian Shield of NE Africa and Arabia. Precambrian Res., vol. 27, 277-300.
54. Kröner, A., Greilling, R., Reischmann, T., Hussein, I.M., Stern, R.J., Dürr, S., Kruger, J., and Zimmer, M., 1987a. Pan-African crustal evolution in the Nubian segment of the NE Africa, in Kröner, A., (ed.), Proterozoic lithospheric evolution: Am. Geophys. Union Geodynamics series 17, 235-257.
55. Kröner, A., Stern, R.J., Dawoud, A.S., Compston, W., Reischmann, T. 1987 b. The Pan- African continental margin in NE Africa: evidence from the geochronological study of granulites at Sabaloka, Sudan. Earth Planetary Science Letters 85, 91-104.
56. Küster, D., Liégeois, J.P., Matukov, D., Sergeev, S., Lucassen, F., 2008. Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuda Desert and Sabaloka (Sudan): evidence for a Bayudian event (920-900 Ma) preceding the Pan-African orogenic cycle (860-590 Ma) at the eastern boundary of the Saharan Metacrat. Precambrian Research. 164, 16-39.
57. Küster, D., Liégeois, J. P. 2001. Sr, Nd isotopes and geochemistry of the Bayuda Desert high-grade metamorphic-basement (Sudan): an early Pan-African oceanic convergent margin, not the edge of the East Saharan ghost craton. Precambrian Research, 109, 1-23.
58. Li, Z. X., Li, X.H., Kinny, P.D., Wang, J. 1999. The Breakup of Rodinia: Did it Start with a Mantle Plume Beneath South China?. Earth Planetary Science Letters. 173 (3), 171-181.
59. Liao, F.X., Zhang, L., Wang Q.Y., Chen, N.S., Santosh, M., Sun, M., Mustafa, H.A., 2014. Geochronology and geochemistry of the dike-swarm garnet-free amphibolites in the Quanji Massif, NW China: Late Paleoproterozoic back arc magmatism and links to amalgamation of the Tarim and North China Cratons and assembly of the Columbia supercontinent. Precambrian Research 249, 33-56.
60. Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., Chen, H.H., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 34-43.
61. Ilnicki, S. 2010. Petrogenesis of continental mafic dykes from the Izera Complex, Karkonosze-Izera Block (West Sudetes, SW Poland). International of Earth Sciences. 99,745-773.
62. Ilnicki, S. 2011. Variscan prograde and contact metamorphism in metabasites from the Sowia Dolina, Karkonosze-Izera massif (SW Poland). Minerals Magazine. 75,185-212.
63. Mayborn, K.R., Lesher, C.E., 2004. Paleoproterozoic mafic dike swarms of northeast Laurentia: products of plumes or ambient mantle?. Earth and Planetary Science Letters 225, 305-317.
64. Mcculloch, M.T., Gamble, J.A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358-374.
65. McMenamin, M. A. S. & McMenamin, D. L. 1990. The Emergence of animals; The Cambrian Breakthrough. Columbia University Press, New York.
66. Meschede, M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram.
67. Meert, J.G., 2002. Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Research 5, 207-216.
68. Mayborn, K.R., Lesher, C.E., 2004. Paleoproterozoic mafic dike swarms of northeast Laurentia: products of plumes or ambient mantle?. Earth and Planetary Science Letters 225, 305-317.
69. Meert, J.G., 2012. What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Research 21, 987-993.
70. Miyashiro, A., Shido, F., 1975. Tholeiitic and calcalkalic series in relation to the behaviors of titanium, vanadium, chromium and nickel. American Journal of Science 275, 265-277.
71. Mustafa, H. A., 2007. A concept of the relationship between metamorphism and structures in El Boeid area, North Kordofan State, Sudan. M.Sc. Thesis, University of Kordofan.
72. Mustafa, H. A., Chen, N. S., Wang, L. X., Ma, C. Q., Liao, F. X., Wang, L., Salih, M. A., Abdelsamad, M. A. 2019. Geochronology and geochemistry of the amphibolites from Jebel El Eiza’a, El Obeid area: Insights into the Neoproterozoic tectonic (Rodinia) evolution in Sudan. In preparation.
73. Mustafa, H. A., Chen, N. S., Salih, M. A., Abdelsamad, M. A., Slama, E.M., Wang, L. X., Ma, C. Q., Liao, F. X., Wang, L., 2018c. Geochemistry and Petrogenesis of the amphibolites from Jebel Kordofan - El Obeid Area, North Kordofan, Sudan. African Journal of Geosciences. 1, 40-59.Nance, R.D., Murphy, J.B., Santosh, M., 2014. The supercontinent cycle: a retrospective essay. Gondwana Research 25, 4-29.
74. Orville, P.M., 1969. A model for metamorphic differentiation of thin layered amphibolites: American Journal of Science. 64-86.
75. Pearce, J.A., 1996. A user’s guide to basalt discrimination diagrams. In: Wyman, D.A. (ed.), Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration. Geological Association of Canada, Short Course Notes. 12, 79-113.
76. Pearce, J. A., Peate, D. W. 1995. Tectonic implications of the composition of volcanic arc magmas. Ann Review Earth Planetary Science. 23, 251-285.
77. Pearce, J.A., Nigel, B. W., Harris and Andrew, G. Trindle. 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Department of Earth Sciences, The Open University, Milton Keynes, MK76AA, Bucks, England.
78. Pearce, J.A., Norry, M.J. 1979. Petrogenetic implications of Ti, Zr, Yand Nb variations in volcanic rocks. Contribution of Mineral Petrology 69, 33-47.
79. Peng, P., Zhai, M.G., Guo, J.H., Kusky, T., Zhao, T.P., 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton. Gondwana Research 12, 29-46.
80. Pesonen, L.J., Salminen, J., Veikkolainen, T. 2012. International Project “Supercontinent Symposium” [. Kumpula Campus, University of Helsinki.
81. Powell, C. M., Li, Z. X., McElhinny, M. W., Meert, J. G., Park, J. K. 1993. Paleomagnetic constraints on timing of the Neoproterozoic break-up of Rodinia and the Cambrian formation of Gondwana. Geology, 21, 889-892.
82. Reddy, S.M., Evans, D.A.D., 2009. Palaeoproterozoi supercontinents and global evolution: correlations from core to atmosphere. Special Publication Geological Society, 323, 1-26.
83. Ries, A.C., Shackleton, R.M., Dawoud, A.S. 1985. Geochronology, geochemistry and tectonics of the NE Bayuda Desert in northern Sudan: Implication for the western margin of the late Proterozoic fold belt of NE Africa. Precambrian Research 30, 43-62.
84. Roberts, N.M.W., 2013. The boring billion? - Lid tectonics, continental growth and Environmental change associated with the Columbia supercontinent. Geoscience Frontiers 4, 681-691.
85. Rollinson, H.R., 1993. Using geochemical data: Evaluation, Presentation, Interpretation. Longman, New York, 352pp.
86. Rodis, H.J, Hassan, A and Wahadan, L. 1964. Ground Water Geology of Kordofan Province Bulletin No. 14, Ministry of Mineral Resources, Geological Survey Department, Khartoum, Sudan.
87. Rogers, J.J.W., 1996. A history of continents in the past three billion years. J. Geology 104, 91-107.
88. Rogers, J.J.W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research 5, 5-22.
89. Rogers, J.J.W., Santosh, M., 2003. Supercontinents in Earth History. Gondwana Research 6, 357-368.
90. Rogers, J.J.W., 2012. Did natural fission of 235U in the earth lead to formation of the supercontinent Columbia? Geoscience Frontiers 3, 369-374.
91. Rollinson, H.R., 1993. Using geochemical data: Evaluation, Presentation, Interpretation. Longman, New York, 352pp.
92. Williams, H., Hoffman, P. H., Lewry, J. F., Monger, J.W.H. & Rivers, T. 1991. Anatomy of North America: thematic geologic portrayals of the continents. Tectonophysics, 187, 117-134.
93. Schandelmeier, H., Wipfler, E., Küster, D., Sultan, M., Becker, R., Stern, R.J., Abdelsalam, M.G. 1994. Atmur Delgo suture: A Neoproterozoic oceanic basin extending into the interior of northeast Africa. Geology 22, 563-566.
94. Schandelmeier, H., Richter, A., Harms, U., Abdel Rahman, E.M. 1990. Lithology and structure of the late Proterozoic Jebel Rahib fold-and-thrust belt (SW Sudan). Berliner Geowissen Abher (A) 120. 1, 15-30.
95. Schandelmeier, H., Darbyshire, D.P.F., Harms, U., Richter, A. 1988. The E Saharan Craton: evidence for pre-Pan-African crust in NE Africa W of the Nile. In: El Gaby, S., Greiling, R.O. (Eds.). The Pan-Africa belts in NE Africa and Adjacent areas. Friedr. Vieweg and Sohn.. 69-94.
96. Schandelmeier, H., Richter, A., Harms, U. 1987. Proterozoic deformation of the East Saharan Craton in southeast Libya, South Egypt and North Sudan. Tectono Physics 140, 233-246.
97. Staudigel, H., Davies, G.R., Hart, S.R., Marchant, K.M., Smith, B.M., 1995. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/ 418. Earth and Planetary Science Letters 130, 169-185.
98. Stein, M. and Hofmann, A.W. 1994. Mantle plumes and episodic crustal growth. Nature 372, 63-68.
99. Stern, R.J. 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogen; implication for the consolidation of Gondwanaland. Annual Reviews of Earth and Planetary Science 22, 319-351.
100. Stern, R.J. and Dawoud, A.S. 1991. Late Precambrian (740Ma) Charnokite, Enderbite, and granite from Jebel Moya, Sudan: a link between the Mozambique Belt and the Arabian- Nubian Shield? Journal of Geology. 99, 648-659.
101. Stern, R.J., Kröner, A., Manton, W.I., Reischmann, T., Mansour, M., Hussein, I.M. 1989. Geochronology of the late Precambrian Hamisana shear zone, Red Sea Hills, Sudan and Egypt. Journal of Geological Society, London, 146, 1017-1029.
102. Stow, H., Neilson, M.J., Neathery, T.L., 1984 Petrography, Geochemistry, and Tectonic Significance of the Amphibolites of the Alabama Piedmont. American Journal of Science, 284, (416-436).
103. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In Sanders, A.D., Norry, M.J. (eds.), Magmatism in the Ocean Basins. Geological Society. Special Publication, London 42, 313-345.
104. Sun, S., Nesbitt, R.V. 1978. Geochemical regularities and genetic significance of ophiolitic basalts: Geology 6, (689-693).
105. Turner, F.J., and Verhoogen, J., 1960, Igneous and metamorphic petrology: McGraw-Hill, New York, p 694.
106. Vail, J.R., 1990. Geochronology of the Sudan. Overseas Geology and Mineral Resources, vol. 66.
107. Vail, J.R. 1978. Outline of the geology and mineral deposits of the Democratic Republic of the Sudan and adjacent areas. Overseas Geology and Mineral Resources, 49, 67 pp., London.
108. Vail, J.R., 1973. Outline of the Geology of the Nuba Mountains and Vicinity Southern Kordofan Province, Sudan, vol. 23. Bulletin of the Geological and Mineral Resources Authority of the Sudan.
109. Vail, J.R. 1972. Geological reconnaissance in the Zalingei and Jebel Marra areas of western Darfur Province. Sudan Geological Survey Department Bulletin 14, 50 p.
110. Vail, J.R., 1971. Geological reconnaissance in part of Berber District, Northern Province, Sudan: Sudan Geol. Survey Department Bulletin. 18, 76.
111. Walker, K.B., Joplin, G.A., Lovering, J.F. and Green, R., 1960. Metamorphic and metasomatic convergence of basic igneous rocks and lime-magnesia sediments of the Precambrian of northwestern Queensland. Geological Society of Australia. 6, 149-178.
112. Weaver, B.L., Tarney, J., 1981. Empirical approach to estimating the composition of the continental crust. Nature, 310, 575-577.
113. Weil, A. B., Van der Voo R., Niocaill, M. C., Meert, J. G., 1998. The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth and Planetary Science Letters 154, 13-24.
114. Wingate, M. T. D. & Giddings, J. W.2000. Age and Palaeomaganetism of the mundine well dyke swarm, western Austaralia: implications for an Australia - Laurentia connection at 755 Ma. Precambrian Research, 100, 335 - 357.
115. Wingate, M. T. D., Campbell, I.H., Compston, W., Gibson, G. M. 1998 Ion Microprobe U-Pb Ages for Neoproterozoic Basaltic Magmatism in South-Central Australia and Implications for the Breakup of Rodinia. Precambrian Research, 87, 135-159.
116. Wilson, M.1993. Igneous petrogenesis: a global tectonic approach. Chapman and Hall, London 466 p.
117. Winchester, J. A., Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.
118. Wood, D.A., Tamey, J., Weaver, B.L. 1981. Trace element variations in Atlantic Ocean basalts and Proterozoic dykes from Northwest Scotland: their bearing upon the nature and geochemical evolution of the upper mantle. Tectonophysics. 75, 91-112
119. Wood, D. A., 1980. The application of a Th-Hf-Ta diagram to problems of tectono- magmaticclassification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters. 50, 11-30.
120. Yang, Q. Y., Santosh, M. 2014. Late Paleoproterozoic post-collisional magmatism in the North China Craton: Geochemistry, zircon U-Pb geochronology and Hf isotope of the pyroxenite-gabbro-diorite suite from Xinghe, Inner Mongolia. International Geology Review.
121. Zhang, C.L., Li, Z.X., Li, X.H., Ye, H.M., 2009. Neoproterozoic mafic dyke swarms at thenorthern margin of the Tarim Block. NW China: age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Science 35, 167-179.
122. Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., 2002a. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Review 59, 125-162.
123. Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., 2002b. SHRIMP U-Pb zircon ages of the Fuping Complex: implications for accretion and assembly of the North China Craton. American Journal of Science 302, 191-226.
124. Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2002c. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Science Review, 59: 125-162.
125. Zhao, G.C., Sun, M., Wilde, S.A., 2003. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton. Gondwana Research 6, 417-434.
126. Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Review 67, 91-123.
127. Zhao, G.C., Li, S.Z., Sun, M., Wilde, S.A. 2011. Assembly, accretion, and break-up of the Palaeo- Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. International Geology Review. 53, 1331-1356.
Published
2021-06-24
How to Cite
MUSTAFA, Hassan A et al. Significance of the Geochemistry, Petrogenesis and Tectonic Evolution of the Neoproterozoic amphibolites groups within the Gneisses and Migmatites from El Obeid Area, North Kordofan State, Sudan. Journal of Advanced Research in Geo Sciences & Remote Sensing, [S.l.], v. 7, n. 3&4, p. 1-20, june 2021. ISSN 2455-3190. Available at: <http://thejournalshouse.com/index.php/geoscience-remotesensing-earth/article/view/33>. Date accessed: 22 jan. 2025.