Advancements in Optical Current Sensors for High Power Systems: A Comprehensive Review

  • Dr. Badri Narayan Pandey Department of Civil Engieneering, K. L University, Vaddeswaram,hra Pradesh
  • Sumit Kumar Department of Civil Engieneering, K. L University, Vaddeswaram,hra Pradesh

Abstract

A new generation of smart grids may find the inherent benefits of optical sensor technology to be highly useful. These benefits are especially attractive for high voltage applications. A review of optical sensor technologies for electrical current metering in high voltage applications is provided by the authors in this publication. Along with a more in-depth focus on contemporary developments, a brief historical summary is provided. All fibre sensors, bulk magneto-optical sensors, piezoelectric transducers, magnetic force sensors, and hybrid sensors are among the technologies covered. The fundamental benefits and drawbacks of physical concepts are explained. Configurations and methods to deal with issues such magnetic field-induced linear birefringence, interference from outside currents, and others are described. The most recent technology, including commercially available systems, is given.

References

1. Ning, Y.N.; Wang, Z.P. Recent progress in optical currentv sensing techniques. Rev. Sci. Instrum.
2. 1995, 66, 3097–3111.
3. Hecht, E. Optics, 4th ed.; Fundação Calouste Gulbenkian: San Francisco, CA, USA, 2002; pp. 325–368.
4. Jorge, P. Sensores Ópticos para a Medição de Corrente Elétrica em Alta-tensão. Master Thesis; Faculdade de
Ciências da Universidade do Porto, Porto, Portugal, 2001.
5. Blake, J.; Tantaswadi, P.; Carvalho, R. In-line sagnac interferometer current sensor. IEEE Trans. Power
Delivery 1996, 11, 116–121.
6. Jackson, D.A. An optical system with potential for remote health monitoring of subsea machinery. Meas.
Sci. Technol. 2009, 20, 1–8.
7. Perciante, C.D.; Ferrari, J.A. Magnetic crosstalk minimization in optical current sensors. IEEE Trans.
Instrum. Meas. 2008, 57, 2304–2308.
8. Kurosawa, K.; Sakamoto, K.; Yoshida, S. Polarization- Maintaining Properties of the Flint Glass- Fiber for the
Faraday Sensor Element. In the Tenth International Conference on Optical Fiber Sensors, Glasgow, Scotland, 11 October 1994; pp. 28–35.
9. Yamashita, T.; Watabe, A.; Masuda, I.; Sakamoto, K.; Kurosawa, K.; Yoshida, S. Extremely Small Stress-Optic
Coefficient Glass Single Mode Fibers for Current Sensor. In Optical Fiber Sensors 11, Japan, 21 May 1996; pp.
168–171.
10. Kurosawa, K. Optical current transducers using flint glass fiber as the Faraday sensor element. Opt. Rev.
1997, 4, 38–44.
11. Hotate, K.; Thai, B.T.; Saida, T. Comparison between Flint Glass Fiber and Twisted/Bent Single- Mode Fiber
as a Faraday Element in an Interferometric Fiber Optic Current Sensor. In European Workshop on Optical Fibre
Sensors, Scotland, 8 July 1998; pp. 233–237.
12. Barczak, K.; Pustelny, T.; Dorosz, D.; Dorosz, J. New optical glasses with high refractive indices for applications in optical current sensors. Acta Phys. Pol. A 2009, 116, 247–249.
13. Sun, L.; Jiang, S.; Zuegel, J.D.; Marciante, J.R. Effective verdet constant in terbium-doped-core. Opt. Lett.
2009, 34, 1699–1701.
14. Sun, L.; Jiang, S.; Marciante, J.R. Compact all-fiber optical Faraday components using 65-wt%- terbiumdoped
fiber with a record Verdet constant of −32 rad/ (Tm). Opt. Express 2010, 18, 12191–12196.
15. Rose, A.H.; Ren, Z.B.; Day, G.W. Twisting and annealing optical fiber for current sensors. J. Lightwave Technol.
1996, 14, 2492–2498.
16. Laming, R.I.; Payne, D.N. Electric-current sensors employing spun highly birefringent optical fibers. J.
Lightwave Technol. 1989, 7, 2084–2094.
17. Bohnert, K.; Gabus, P.; Brandle, H. Towards commercial use of optical fiber current sensors. In Conference on
Lasers and Electro-Optics (CLEO 2000), San Francisco, CA, USA, 7–12 May 2000; pp. 303–304.
18. Tang, D.; Rose, A.H.; Day, G.W.; Etzel, S.M. Annealing of linear birefringence in single-mode fiber coils—
Application to optical fiber current sensors. J. Lightwave Technol. 1991, 9, 1031–1037.
19. Rose, A.H.; Etzel, S.M.; Wang, C.M. Verdet constant dispersion in annealed optical fiber current sensors.
J. Lightwave Technol. 1997, 15, 803–807.
20. Drexler, P.; Fiala, P. Utilization of Faraday mirror in fiber optic current sensors. Radioengineering2008,
17, 101–107.
21. Zhou, S.; Zhang, X. Simulation of linear birefringence reduction in fiberoptical current sensor.IEEE Photon.
Technol. Lett. 2007, 19, 1568–1570.
22. Kurosawa, K.; Yamashita, K.; Sowa, T.; Yamada, Y. Flexible fiber faraday effect current sensor using flint
glass fiber and reflection scheme. IEICE Trans. Electron. 2000, 83, 326–330.
23. Bohnert, K.; Philippe, G.; Hubert, B.; Guggenbach, P. Highly accurate fiber-optic DC current sensor for the
electrowinning industry. IEEE Trans. Ind. Appl. Mag. 2005, 43, 180–187.
24. Zimmermann, A.C.; Besen, M.; Encinas, L.S.; Nicolodi, R. Improving Optical Fiber Current Sensor Accuracy using Artificial Neural Networks to Compensate Temperature and Minor Non-Ideal Effects. In the 21st International Conference on Optical Fiber Sensors, Ottawa, Canada, 21 May 2011, pp. 77535Q:1–77535Q:4.
25. The ABB Group—Automation and Power Technologies. Available online: http://www.abb.com/ (accessed on
14 December 2011).
26. Rahmatian, F.; Blake, J.N. Applications of high-voltage fiber optic current sensors. In IEEE Power Engineering
Society General Meeting, Montreal, Canada, 18 June 2006; pp. 1–6.
27. Alstom Grid. Available online: http://www.nxtphase. com/ (accessed on 12 Dezember 2011).
28. Ripka, P. Electric current sensors: A review. Meas. Sci. Technol. 2010, 21, 1–23.
29. Walsey, G.A.; Fisher, N.E. Control of the Critical Angle of Reflection in an Optical Current Sensor. In Optical
Fiber Sensors 12, Williamburg, VA, USA, 28 October 1997; pp. 237–240.
30. Bush, S.P.; Jackson, D.A. Numerical investigations of the effects of birefringence and total internal reflection
on Faraday effect current sensors. Appl. Opt. 1992, 31, 5366–5374.
31. Sato, T.; Takahashi, G.T.; Inui, Y. Method and apparatus for optically measuring a current. Patent Number:
4564754, 1986.
32. Fisher, N.E.; Jackson, D.A. Vibration immunity and Ampere’s circuital law for a near perfect triangular
Faraday current sensor. Meas. Sci. Technol. 1996, 7, 1099–1102.
33. Yi, B.; Chu, B.; Chiang, K.S. Magneto-optical electriccurrent sensor with enhanced sensitivity.Meas. Sci.
Technol. 2002, 13, N61–N63.
34. Ning, Y.N.; Chu, B.; Jackson, D.A. Miniature Faraday current sensor based on multiple critical angle
reflections in a bulk-optic ring. Opt. Lett. 1991, 16, 1996–1998.
35. Ning, Y.N.; Wang, Z.P.; Palmer, A.W.; Gratan, K. A Faraday current sensor using a novel multi-opticalloop
sensing element. Meas. Sci. Technol. 1995, 6, 1339–1342.
36. Benshun, Y.; Andrew, C.; Madden, I.; MacDonald, J.R.; Andonovic, I. A Novel bulk-glass optical current transducer having an adjustable multiring closedoptical- path. IEEE Trans. Instru. Meas. 1998, 47,
240–243.
37. Wang, Z.P.; Wang, H.; Jiang, H.; Liu, X. A magnetic field sensor based on orthoconjugate reflection used for current sensing. Opt. Laser Technol. 2007, 39, 1231–1233.
38. Wang, Z.P.; Qing, B.; Q. Yi, J.Z.; Jin, H. Wavelength dependence of the sensitivity of a bulk-glass optical
current transformer. Opt. Laser Technol. 2006, 38, 87–93.
39. Wang, Z.P.; Xiaozhong, W.; Liu, X.; Chunmei, O.; Tan, Q. Effect of the spectral width of optical sources upon
the output of an optical current sensor. Meas. Sci. Technol. 2005, 16, 1588–1592.
40. Madden, W.I.; Michie, W.C.; Cruden, A.; Niewczas, P.; McDonald, J.R. Temperature compensation for optical
current sensors. Opt. Eng. 1999, 38, 1699–1707.
41. Deng, X.Y.; Li, Z.; Qixian, P.; Liu, J.; Tian, J. Research on the magneto-optic current sensor for highcurrent
54 Pandey BN et al. J. Adv. Res. Geo Sci. Rem. Sens. 2023; 10(1&2) ISSN: 2454-8650 pulses. Rev. Sci. Instru. 2008, 79, 1–4.
42. Cruden, A.; Michie, C.; Madden, I.; Niewczas, P.; McDonald, J.R.; Andonovic, I. Optical current measurement system for high-voltage applications.Measurement 1998, 24, 97–102.
43. PowerSense A/S—DISCOS System. Available online: http://www.powersense.dk/ (accessed on 15
December 2011),
44. Yariv, A.; Winsor, H.V. Proposal for detection of magnetic-fields through magnetostrictive perturbation of optical fibers. Opt. Lett. 1980, 5, 87–89.
45. Dandridge, A.; Tveten, A.B.; Sigel, G.H.; West, E.J.; Giallorenzi, T.G. Optical fiber magnetic-field sensors.
Electron. Lett. 1980, 16, 408–409.
46. Koo, K.P.; Sigel, G.H. Characteristics of fiberoptic magnetic-field sensors employing metallic glasses. Opt. Lett. 1982, 7, 334–336.
47. Kersey, A.D.; Jackson, D.A.; Corke, M. Single-mode fibreoptic magnetometer with DC bias field stabilization. J.
Lightwave Technol. 1985, 3, 836–840.
48. Bucholtz, F.; Koo, K.P.; Dandridge, A. Effect of external perturbations on fiber-optic magnetic sensors. J. Lightwave Technol. 1988, 6, 507–512.
49. Jarzynski, J.; Cole, J.H.; Bucaro, J.A.; Davis, C.M. Magnetic-field sensitivity of an optical fiber with
magnetostrictive jacket. Appl. Opt. 1980, 19, 3746– 3748.
50. Sedlar, M.; Paulicka, I.; Sayer, M. Optical fiber magnetic field sensors with ceramic magnetostrictive jackets.
Appl. Opt. 1996, 35, 5340–5344.
51. Mora, J.; Diez, A.; Cruz, J.L.; Andres, M.V. A magnetostrictive sensor interrogated by fiber gratings
for DC-Current and temperature discrimination. IEEE Photon. Technol. Lett. 2000, 12, 1680–1682.
52. Quintero, S.M.M.; Martelli, C.; Braga, A.M.B.; Valente, L.C.G.; Kato, C.C. Magnetic field measurements based
on terfenol coated photonic crystal fibers. Sensors 2011, 11, 11103–11111.
53. Heaton, H.I. Thermal straining in a magnetostrictive optical fiber interferometer. Appl. Opt. 1980, 19,
3719–3720.
54. Rashleigh, S.C. Magnetic-field sensing with a singlemode fiber. Opt. Lett. 1981, 6, 19–21.
55. Cole, J.H.; Lagakos, N.; Jarzynski, J.; Bucaro, J.A. Magneto-optic coupling coefficient for fiber
interferometric sensors. Opt. Lett. 1981, 6, 216–218.
56. Hartman, N.; Vahey, D.; Kidd, R.; Browning, M. Fabrication and testing of a nickel-coated single-mode
fiber magnetometer. Electron. Lett. 1982, 18, 224–226.
57. Willson, J.P.; Jones, R.E. Magnetostrictive fiber-optic sensor system for detecting DC magnetic-fields. Opt.
Lett. 1983, 8, 333–335.
58. Kersey, A.D.; Corke, M.; Jackson, D.A.; Jones, J.D.C. Detection of DC and low-frequency AC magnetic-fields
using an all single-mode fiber magnetometer. Electron. Lett. 1983, 19, 469–471.
59. Koo, K.; Dandridge, A.; Tveten, A.; Sigel, G., Jr. A fiberoptic DC magnetometer. J. Lightwave Technol. 1983,
1, 524–525.
60. Kersey, A.D.; Corke, M.; Jackson, D.A. Phase-shift nulling dc-field fibre-optic magnetometer. Electron. Lett. 1984, 20, 573–574.
61. Bucholtz, F.; Dagenais, D.M.; Koo, K.P. Mixing and detection of Rf signals in fibre-optic magnetostrictive 72. Yang, M.H.; Dai, J.X.; Zhou, C.M.; Jiang, D.S. Optical fiber magnetic field sensors with TbDyFe magnetostrictive
thin films as sensing materials. Opt. Express 2009, 17, 20777–20782.
73. Pacheco, C.J.; Bruno, A.C. The effect of shape anisotropy in giant magnetostrictive fiber Bragg grating sensors. Meas. Sci. Technol. 2010, 21, 065205–065209.
74. Quintero, S.M.M.; Braga, A.M.B.; Weber, H.I.; Bruno, A.C.; Araujo, J.F.D.F. A Magnetostrictive compositefiber Bragg grating sensor. Sensors 2010, 10, 8119– 8128.
75. Smith, G.N.; Allsop, T.; Kalli, K.; Koutsides, C.; Neal, R.; Sugden, K.; Culverhouse, P.; Bennion, I. Characterisation
and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser
ablated microslot for the detection of static magnetic fields. Opt. Express 2011, 19, 363–370.
76. Yang, S.Y.; Chiu, Y.P.; Jeang, B.Y.; Horng, H.E.; Hong, C.Y.; Yang, H.C. Origin of field-dependent optical
transmission of magnetic fluid films. Appl. Phys. Lett. 2001, 79, 2372–2374.
77. Yang, S.Y.; Chen, Y.F.; Horng, H.E.; Hong, H.E.; Hong, C.Y.; Tse, W.S.; Yang, H.C. Magnetically-modulated
refractive index of magnetic fluid films. Appl. Phys. Lett. 2002, 81, 4931–4933.
78. Yang, S.Y.; Chieh, J.J.; Horng, H.E.; Hong, C.Y.; Yang, H.C. Origin and applications of magnetically tunable
refractive index of magnetic fluid films. Appl. Phys. Lett. 2004, 84, 5204–5206.
79. Liu, T.; Chen, X.; Di, Z.; Zhang, J.; Li, X.; Chen, J. Tunable magneto-optical wavelength filter of long-period fiber
grating with magnetic fluids. Appl. Phys. Lett. 2007, 91, 121116:1–121116:3.
80. Hu, T.; Zhao, Y.; Li, X.; Chen, J.J.; Lu, Z.W. Novel optical fiber current sensor based on magnetic fluid. Chin.
Opt. Lett. 2010, 8, 392–394.
81. Dai, J.X.; Yang, M.H.; Li, X.B.; Liu, H.L.; Tong, X.L. Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt. Fiber Technol. 2011, 17, 210–213.
82. Thakur, H.V.; Nalawade, S.M.; Gupta, S.; Kitture, R.; Kale, S.N. Photonic crystal fiber injected with Fe3O4
nanofluid for magnetic field detection. Appl. Phys. Lett. 2011, 99, 161101:1–161101:3.
83. Zu, P.; Chan, C.C.; Siang, L.W.; Jin, Y.X.; Zhang, Y.F.; Fen, L.H.; Chen, L.H.; Dong, X.Y. Magneto-optic fiber
Sagnac modulator based on magnetic fluids. Opt. Lett. 2011, 36, 1425–1427.
84. Zhao, Y.; Lv, R.Q.; Ying, Y.; Wang, Q. Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic
field measurement based on magnetic fluid. Opt. Laser Technol. 2012, 44, 899–902.
85. Zu, P.; Chan, C.C.; Lew, W.S.; Jin, Y.X.; Zhang, Y.F.; Liew sensor. Electron. Lett. 1989, 25, 1285–1286.
62. Bucholtz, F.; Dagenais, D.M.; Koo, K.P. High-frequency fiberoptic magnetometer with 70 Ft/square-root (hz)
resolution. Electron. Lett. 1989, 25, 1719–1721.
63. Oh, K.D.; Ranade, J.; Arya, V.; Wang, A.; Claus, R.O. Optical fiber Fabry-Perot interferometric sensor formagnetic field measurement. IEEE Photon. Technol.
Lett. 1997, 9, 797–799.
64. Perez-Millan, P.; Martinez-Leon, L.; Diez, A.; Cruz,
J.L.; Andres, M.V. A fiber-optic current sensor with
frequency-codified output for high-voltage systems.
IEEE Photon. Technol. Lett. 2002, 14, 1339–1341.
65. Djinovic, Z.; Tomic, M.; Gamauf, C. Fiber-optic interferometric sensor of magnetic field for structural health monitoring. In Eurosensors XXIV Conference,Linz, Austria, 5–8 September 2010; Volume 5, pp.
1103–1106.
66. Yi, B.; Chu, B.C.B.; Chiang, K.S. Temperature compensation for a fiber-Bragg-grating-based
magnetostrictive sensor. Microwave Opt. Technol.
Lett. 2003, 36, 211–213.
67. Satpathi, D.; Moore, J.A.; Ennis, M.G. Design of a Terfenol-D based fiber-optic current transducer. IEEE
Sens. J. 2005, 5, 1057–1065.
68. Li, M.F.; Zhou, J.F.; Xiang, Z.Q.; Lv, F.Z. Giant magnetostrictive magnetic fields sensor based on
dual fiber Bragg gratings. In 2005 IEEE Networking, Sensing and Control Proceedings, Arizona, AZ, USA,
19–22 March 2005; pp. 490–495.
69. Mora, J.; Martinez-Leon, L.; Diez, A.; Cruz, J.L.; Andres, M.V. Simultaneous temperature and ac-current
measurements for high voltagelines using fiber Bragg gratings. Sens. Actuat. A Phys. 2006, 125, 313–316.
70. Reilly, D.; Willshire, A.J.; Fusiek, G.; Niewczas, P.; McDonald, J.R. A fiber-Bragg-grating-based sensor
for simultaneous AC current and temperature measurement. IEEE Sens. J. 2006, 6, 1539–1542.
71. Davino, D.; Visone, C.; Ambrosino, C.; Campopiano, S.;Cusano, A.; Cutolo, A. Compensation of hysteresis in
magnetic field sensors employing fiber Bragg grating and magneto-elastic materials. Sens. Actuat. A Phys.
2008, 147, 127–136 72. Yang, M.H.; Dai, J.X.; Zhou, C.M.; Jiang, D.S. Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt. Express 2009, 17,
20777–20782.
73. Pacheco, C.J.; Bruno, A.C. The effect of shape anisotropy in giant magnetostrictive fiber Bragg grating sensors.Meas. Sci. Technol. 2010, 21, 065205–065209.
74. Quintero, S.M.M.; Braga, A.M.B.; Weber, H.I.; Bruno, A.C.; Araujo, J.F.D.F. A Magnetostrictive compositefiber
Bragg grating sensor. Sensors 2010, 10, 8119–8128.
75. Smith, G.N.; Allsop, T.; Kalli, K.; Koutsides, C.; Neal, R.; Sugden, K.; Culverhouse, P.; Bennion, I. Characterisation
and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser
ablated microslot for the detection of static magnetic fields. Opt. Express 2011, 19, 363–370.
76. Yang, S.Y.; Chiu, Y.P.; Jeang, B.Y.; Horng, H.E.; Hong, C.Y.; Yang, H.C. Origin of field-dependent optical transmission of magnetic fluid films. Appl. Phys. Lett.
2001, 79, 2372–2374.
77. Yang, S.Y.; Chen, Y.F.; Horng, H.E.; Hong, H.E.; Hong, C.Y.; Tse, W.S.; Yang, H.C. Magnetically-modulated
refractive index of magnetic fluid films. Appl. Phys. Lett. 2002, 81, 4931–4933.
78. Yang, S.Y.; Chieh, J.J.; Horng, H.E.; Hong, C.Y.; Yang, H.C. Origin and applications of magnetically tunable
refractive index of magnetic fluid films. Appl. Phys. Lett. 2004, 84, 5204–5206.
79. Liu, T.; Chen, X.; Di, Z.; Zhang, J.; Li, X.; Chen, J. Tunable magneto-optical wavelength filter of long-period fiber
grating with magnetic fluids. Appl. Phys. Lett. 2007, 91, 121116:1–121116:3.
80. Hu, T.; Zhao, Y.; Li, X.; Chen, J.J.; Lu, Z.W. Novel optical fiber current sensor based on magnetic fluid. Chin.
Opt. Lett. 2010, 8, 392–394.
81. Dai, J.X.; Yang, M.H.; Li, X.B.; Liu, H.L.; Tong, X.L. Magnetic field sensor based on magnetic fluid clad
etched fiber Bragg grating. Opt. Fiber Technol. 2011, 17, 210–213.
82. Thakur, H.V.; Nalawade, S.M.; Gupta, S.; Kitture, R.; Kale, S.N. Photonic crystal fiber injected with Fe3O4
nanofluid for magnetic field detection. Appl. Phys. Lett. 2011, 99, 161101:1–161101:3.
83. Zu, P.; Chan, C.C.; Siang, L.W.; Jin, Y.X.; Zhang, Y.F.; Fen, L.H.; Chen, L.H.; Dong, X.Y. Magneto-optic fiber
Sagnac modulator based on magnetic fluids. Opt. Lett. 2011, 36, 1425–1427.
84. Zhao, Y.; Lv, R.Q.; Ying, Y.; Wang, Q. Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic
field measurement based on magnetic fluid. Opt. Laser
Technol. 2012, 44, 899–902.
85. Zu, P.; Chan, C.C.; Lew, W.S.; Jin, Y.X.; Zhang, Y.F.; Liew H.F.; Chen, L.H.; Wong, W.C.; Dong, X.Y. Magnetooptical
fiber sensor based on magnetic fluid. Opt. Lett.
2012, 37, 398–400.
86. Ning, Y.N.; Chu, B.C.B.; Jackson, D.A. Interrogation of a conventional current transformer by a fiberoptic
interferometer. Opt. Lett. 1991, 16, 1448–1450.
87. Ning, Y.N.; Liu, T.Y.; Jackson, D.A. Two low-cost robust electrooptic hybrid current sensors capable of operation at extremely high-potential. Rev. Sci.Instru. 1992, 63, 5771–5773.
88. Tonnesen, O.; Beatty, N.; Skilbreid, O. Electrooptic methods for measurement of small DC currents at high-voltage level. IEEE Trans. Power Delivery 1989, 4, 1568–1572.
89. Pilling, N.A.; Holmes, R.; Jones, G.R. Optical-fiber line current measurement system. In Sixth International
Conference on Dielectric Materials, Measurements and Applications, Manchester, England, 7 September
1992, 363, 278–281.
Published
2023-03-25
How to Cite
PANDEY, Dr. Badri Narayan; KUMAR, Sumit. Advancements in Optical Current Sensors for High Power Systems: A Comprehensive Review. Journal of Advanced Research in Geo Sciences & Remote Sensing, [S.l.], v. 10, n. 1&2, p. 40-55, mar. 2023. ISSN 2455-3190. Available at: <http://thejournalshouse.com/index.php/geoscience-remotesensing-earth/article/view/783>. Date accessed: 22 jan. 2025.